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ABSTRACT 

This document primarily investigates the structure of the Pythagorean Tree, integrating my 

previous research and writings with earlier insights and contemporary ideas related to its fractal 

nature, which is produced through instrumental schemata. To illustrate the concept of 

instrumental schemata, I will present the example of Generator tools that can be created within 

dynamic geometry software environments. I will briefly discuss the van Hiele theory, which is 

crucial for classifying students based on their understanding and interpretation of geometric 

figures. In one section, I will investigate a fresh perspective on the Pythagorean tree, 

concentrating on the figures that arise when one carefully observes the empty spaces formed 

between the branches of the tree. Finally, I will delineate the essential elements of an innovative 

Fractal-based Dynamic Program (FDP) that I designed, developed and implemented. I will 

propose its effective implementation, as it has the potential to serve as an informal curriculum 

centered on the principles of transformation geometry and fractals for educational projects. It 

is anticipated that educators will regard the incorporation of fractal geometry into the standard 

curriculum as a beneficial didactic and pedagogic framework for fostering students' curiosity 

and demonstrating the dynamic character of the field. 

Keywords: Fractal, Pythagorean Tree, Dynamic Geometry Software, van Hiele Geometric 

Thinking Levels, Transformation Geometry, Instrumental social schema 

1.0 INTRODUCTION: THE PYTHAGOREAN TREE FRACTAL STRUCTURE 

This study will begin by highlighting my significant engagement with the concept of fractals, 

which started in 2005, while I was preparing my Master’s thesis as part of the Postgraduate 

Program in Didactic and Methodology of Mathematics. In my dissertation research, I 

conducted a thorough investigation of the construction of fractal structures, including the 

Sierpinski triangle, the Pythagorean tree, and various spirals such as the Golden spiral, the 

Archimedean spiral, and the Baravelle spiral. My main objective was to establish an 

instrumental, conceptual, and experimental connection between these fractal constructions and 

the students' perception and comprehension of mathematical concepts such as sequences, 

geometric progressions, limits, and infinitesimals. Additionally, I aimed to explore how 

students across different levels of education—elementary, middle, and high school—could 

conceptually understand these ideas through the use and interaction with a DGS software, The 

Geometer’s Sketchpad (Jackiw, 1991). In the process of constructing fractals, I developed and 

utilized customized tools within dynamic geometry software, with the objective of creating a 

http://www.ijrehc.com/
https://doi.org/10.37602/IJREHC.2025.6327


International Journal of Research in Education Humanities and Commerce 

Volume 06, Issue 03 "May - June 2025" 

ISSN 2583-0333 

 

www.ijrehc.com                                Copyright © The Author, All rights reserved Page 343 
 

layered structure—an endeavor to illustrate the concept of self-similarity in my lesson studies. 

This process led me to conceptualize the notion of ‘schema’ (e.g., Patsiomitou, 2008c) in the 

sense articulated by Vergnaud (1998): a dynamic concept that continuously adapts to include 

new components—a cognitive structure that is, in essence, 'self-similar'. Moreover, the iterative 

process provided by the software environment enabled me to conceive the notion of linking 

visual active representations (e.g., Patsiomitou, 2008a, b, 2012 a, b), whereas the creation of 

fractal objects could be directly linked to the visual ‘alive’ tabulation of measurements and 

calculations. This, in turn, provided a natural pathway to concepts such as sequences, geometric 

progressions, limits, and infinitesimals, through multiple dynamic and active representations 

(e.g., see for example my research study on fractal objects at ICTMT8 (Patsiomitou, 2007a) 

based on my Master’s thesis published 2005). This paper mainly investigates the structure of 

the Pythagorean Tree, incorporating my previous research findings and writings, along with 

recent perspectives concerning its fractal structure, which is produced through ‘instrumental 

schemata' (Patsiomitou, 2025). 

 

Figure 1. A Pythagorean tree figure linked with a sequence of sequential squares’ areas (e.g., 

Patsiomitou, 2005a, b, 2007a, b, 2009c, 2022a) 

The implementation of 'dynamic' fractal structures in the classroom as part of an FDP (Fractal-

based Dynamic Program) proved to be highly engaging for students. They produced stunning 

constructions as part of the FDP that conceptualized and directed, titled 'Omilos for Fractals' 

(also known as Fractals Group: From Zero to Infinity). The development and enhancement of 

the FDP content was informed by my experiences with students in a project-based learning 

environment throughout the academic years 2011-12, 2012-13, and 2013-14. What became 

increasingly important to me was the integration of fractals into the school curriculum. I 

recognized the experimental potential of fractals to meaningfully engage with concepts from 

Algebra, Geometry, and Calculus, through the construction of fractals and the study of their 

algebraic, geometric, and calculus-related properties. I was able to rediscover/reinvent for my 

students many important ideas of the existing mathematics curriculum across several grade 
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levels. Section 10 of this document introduces the FDP, that has the potential to serve as an 

informal curriculum aimed at engaging students with mathematical concepts beyond standard 

school hours or in addition to the official mathematics curriculum. The instructional resources 

utilized in the FDP incorporate several chapters from my book, Learning Mathematics with 

Geometer’s Sketchpad v4 (Patsiomitou, 2009b, c). The book has been updated in 2022 under 

the title Conceptual and instrumental trajectories using linking visual active representations 

created with the Geometer’s Sketchpad (Patsiomitou, 2022a). This book integrates and 

elaborates on my earlier research, which I have presented at conferences in Greece and 

published in academic journals (e.g., Patsiomitou, 2005a, b, 2006a, b, c, d, e, f, g, 2007a, b, c, 

d, e 2008a, b, c, d, e, f, g, h, 2009a, d, e, f, g, h). For the FDP, I developed instructional plans, 

activity sheets, and worksheets related to Transformation Geometry, intended for use in an 

interactive learning environment. The activities were meticulously tailored to align with the 

cognitive levels, developmental stages, and ages of the students, employing the van Hiele 

model (e.g., Fuys et al., 1984). As a result of my research, I proposed the development of a 

'Dynamic' curriculum framework grounded in the Fractal-based Dynamic Program (FDP). I 

have briefly presented and published (Patsiomitou, 2016 a, b, c in Greek) the sequential phases 

of the Fractal-based Dynamic Program (FDP) that I implemented in the classroom to provide 

valuable insights for other mathematics educators. 

 

Figure 2. Sierpinski’s linking visual active representations via the utilization of sequential 

custom tools (Patsiomitou, 2005 a, b, 2014, p. 26) 

This paper, as I mentioned above, investigates the Pythagorean Tree structure. The Pythagorean 

Theorem, as presented in most school textbooks, is typically illustrated through a visual proof 

involving a right-angled triangle. This triangle has two squares on its perpendicular sides, 

resembling branches, and a third square on the hypotenuse, symbolizing the trunk of a 'tree’. If 

this visual configuration is used to iteratively reconstruct the visual proof, it results in a fractal 

structure, wherein the shape’s pattern remains consistent across successive, scaled-down 

iterations of the construction. Moreover, during this sequential process, the shape appears to 

rotate in order to generate the branches of the original "tree." Thus, replications of the initial 

structure emerge—branching visual demonstrations of the Pythagorean Theorem—that 

progressively is a repetition of the process itself. Consequently, both structurally and 

instrumentally, the dimensions of the figures and subfigures continuously decrease. This leads 

to the following question: What is the limiting value of the area of the square/or other figures 

located at the end of each branch? The research questions I investigated throughout the study 

pertain to the notions of geometric sequences, limits, infinitesimals, the nth partial sum of a 

geometric progression, as well the notion of similarity and self-similarity. Shriki and Nutov 

(2016) examine the idea of self-similarity across an infinite series of iterations in their research. 

They characterize fractals as described in the subsequent excerpt: “A Fractal is a geometrical 

object that displays self-similarity i.e. a recurring pattern or structure that manifests at 
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progressively smaller scales. Fractals are constructed through a recursive process where each 

phase of its construction is a repetition of the process itself. This recursive process consists of 

an infinite number of iterations termed ‘phases’, where ‘phase 0’ designates the original shape 

from which the process started” (Shriki &Nutov, 2016, p. 38). Löfstedt (2008) in his Master’s 

thesis Fractal Geometry, Graph and Tree constructions discusses the origins of fractals in the 

following excerpt (p.21): Benoit Mandelbrot (1975) coined the term Fractal, and described it 

as follows: A [fractal is a] rough or fragmented geometric shape that can be subdivided in 

parts, each of which is (at least approximately) a reduced-size copy of the whole. The word is 

derived from the Latin word fractus meaning broken, and is a collective name for a diverse 

class of geometrical objects, or sets, holding most of, or all of the following properties 

(Falconer, 1990). 

The Pythagorean tree's structure, originating from the unique generating node (3,4,5), was 

credited to B. Berggren in 1934 and J.M. Barning in 1963. Based on the Pythagoras theorem 

equation the Pythagorean Tree was initially presented by Dutch mathematics educator Albert 

E. Bosman in 1942. (Refer to https://en.wikipedia.org/wiki/Pythagoras_tree_(fractal) and the 

research by Ali Taghavi (2024) at https://arxiv.org/html/2403.17966v1.) Luis Teia (2016) 

discusses the Pythagorean tree structure, stating that: 

 “The Pythagoras’ tree presented by Berggren in 1934 has stood still and strong for 

almost a century, but probably it is even older. […] Ultimately, when one looks at the 

Pythagoras’ tree, one looks at a ‘tree’”. (p.38) 

This paper discusses the case of the Pythagorean tree with an isosceles right-angled triangle 

that is attached to the side of the original square in the Pythagorean tree. The Pythagorean tree 

is a self-similar fractal structure with ever-decreasing geometric dimensions, but maintains its 

shape at every scale. I will analyze the structure of the Pythagorean tree, which is based on a 

right-angled triangle with sides 3, 4, and 5, in a forthcoming publication.  

In the following section, I will briefly address the Van Hiele theory, which is significant for 

categorizing students based on their perception and comprehension of geometric figures. 

Additionally, I will discuss the concept of 'schema' as articulated in Vergnaud's studies, in 

relation to the idea of the instrumental schema, which I have recently introduced in my latest 

publication (Patsiomitou, 2025). To exemplify this concept, I will provide the instance of 

generator tools that can be developed within dynamic geometry software environments. In one 

section, I will examine a novel viewpoint on investigating the Pythagorean tree, focusing on 

the shapes that emerge when one meticulously observes with great attention to detail the spaces 

created between the tree's branches. I concur with Kinach (2014) in stating that “this is a matter 

of attention. Attention shifts from interacting with the actual problem while problem solving to 

interacting with successive representations of it” (p. 434). Lastly, I will outline the key 

components of the innovative Fractal-based Dynamic Program [FDP], and provide guidance 

for its effective implementation, as it holds the promise of functioning as an informal 

curriculum focused on the principles of transformation geometry and fractals for after-school 

project education. According to the van Hiele theory discussed in the following section, 

students have the potential to enhance their cognitive skills and geometric reasoning. 
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2.0 THE VAN HIELE THEORY  

This study was shaped by the concerns articulated by Dina van Hiele-Geldof (1957/1984), 

whose aim was to explore how a change in learning methods could enhance educational 

outcomes. According to Piaget (1975/1985), students’ cognitive development depends on their 

biological maturity. That students’ cognitive development depends on the teaching process was 

argued by Dina van Hiele-Geldof and Pierre van Hiele in their dissertations in 1957 (Fuys, 

Geddes & Tischler, 1988). Dina van Hiele-Geldof (Fuys, Geddes & Tischler, 1984) in her 

dissertation had the objective to investigate the improvement of learning performance by a 

change in the learning method. Central to this model, is the description of the five levels of 

thought development which are: Level 1 (Recognition or Visualization), Level 2 (Analysis), 

Level 3 (Ordering), Level 4 (Deduction) and Level 5 (Rigor). Pierre van Hiele (1986) 

ultimately defined his model using three levels of thought instead of five: Visual (level 1), 

Descriptive (level 2), and Theoretical (level 3) (as referenced in Teppo, 1991, p. 210). Battista 

uses “constructivist constructs such as levels of abstraction to describe students' progression 

through the van Hiele levels” (Battista, 2011, p.515). He “has elaborated the original van Hiele 

levels to carefully trace students’ progress in moving from informal intuitive 

conceptualizations of 2D geometric shapes to the formal property-based conceptual system 

used by mathematicians” (Battista, 2007, p.851).  He separated each phase in subphases 

(Battista, 2007). An elaboration of Battista's initial three levels, which are particularly relevant 

for secondary students, is presented below: 

Level 1 (Visual-Holistic Reasoning) is separated into sublevel 1.1. (prerecognition) and 

sublevel 1.2 (recognition). (p.851). “Students identify, describe, and reason about shapes and 

other geometric configurations according to their appearance as visual wholes, […] they may 

refer to visual prototypes. […]. Orientation on figures may strongly affect students’ shape 

identifications” (Battista, 2007, p.851).  

Level 2 (Analytic-Componential Reasoning) is separated into sublevel 2.1 (Visual-informal 

componential reasoning), sublevel 2.2 (Informal and insufficient-formal componential 

reasoning) sublevel 2.3 (Sufficient formal property-based reasoning). According to Battista 

“Students [acquire through instruction] a) an increasing ability and inclination to account for 

the spatial structure of shapes by analyzing their parts and how their parts are related and b) an 

increasing ability to understand and apply formal geometric concepts in analyzing relationships 

between parts of shapes”. (Battista, 2007, pp.851-852).  

Level 3 (Relational –Inferential Property-Based Reasoning) into sublevel 3.1 (Empirical 

relations), sublevel 3.2 (Componential analysis), sublevel 3.3 (Logical inference) and sublevel 

3.4 (Hierarchical shape, classification based on logical inference). According to Battista  

“Students explicitly interrelate and make inferences about geometric properties of shapes. […] 

The verbally-stated properties themselves are interiorized so that they can be meaningfully 

decomposed, analyzed, and applied to various shapes”. (Battista, 2007, pp.852-853). 

Researchers have shown that students “often fail in the construction of a geometric 

configuration which is essential for the solution of the underlying geometric problem” 

(Schumann & Green, 1994, p.204). This happens because students at the lower levels “identify, 

[…] their appearance as visual wholes” (Battista, 2007, p.851). Van Hiele emphasized the 
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importance of students adhering to the following five instructional phases within each level 

which are briefly the following (Fuys et al., 1984, p.251):  

◼ Information (inquiry): Through discussion, the teacher identifies what students 

already know about a topic and the students become oriented to the new topic. 

◼ Directed orientation: Students explore the objects of instruction in carefully structured 

tasks such as folding, measuring, or constructing. The teacher ensures that students 

explore specific concepts. 

◼ Explicitation: Students describe what they have learned about the topic in their own 

words. The teacher introduces relevant mathematical terms. 

◼ Free orientation: Students apply the relationships they are learning to solve problems 

and investigate more open-ended tasks. 

◼ Integration: Students summarize and integrate what they have learned, developing a 

new network of objects and relations. 

 

 

Figure 3. An adaptation on Teppo’s diagram (1991, p.210) taking into account 

Battista’s (2007) elaboration of the van Hiele levels (Patsiomitou, 2012a, 2019c 

p. 120) 

Throughout the instructional stages, students advance from lower levels of thinking, 

characterized by concrete structures, to higher levels, which involve abstract structures. 

Numerous researchers, including Burger and Shaughnessy (1986), advocate that the 

sequencing of instruction positively influences students' success. In alignment with van Hiele, 
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Teppo (1991) asserts that each cognitive level is delineated by a learning period during which 

instruction, structured around the five phases of learning, facilitates students' progression to the 

subsequent higher level of thought (p.210). The objective of the initial period is to alter 

students' perceptions of geometric objects (as noted by van Hiele, 1986; Teppo, 1991). 

According to van Hiele (1986) “when after some time, the concepts are sufficiently clear, pupils 

can begin to describe them. […]. The figure becomes the representative of all these properties: 

It gets what we call the “symbol character”. In this stage the comprehension of the figure means 

the knowledge of all these properties as a unity. […]. When the symbol character of many 

geometric figures has become sufficiently clear to the pupils, the possibility is born that they 

also get a signal character”. This means that the symbols can be anticipated. […]. When this 

orientation has been sufficiently developed, when the figures sufficiently act as signals, then, 

for the first time geometry can be practiced as a logical topic” (p. 168). This means 

transforming the visual image or ‘drawing’ what they perceive, into a ‘figure’ (e.g., Parsysz, 

1988; Laborde, 1993; Mariotti, 1997; Patsiomitou, 2008a, 2012a) with concrete properties. The 

use of computer software can effectively support the student’s progression through van Hiele 

levels. According to Gawlick (2005, p.370), a dynamic approach is more suitable for fostering 

advanced level thinking, as tasks designed for lower levels can be extended to higher levels, 

thereby encouraging students to develop a habit of 'discovery'. Additionally, this approach 

offers a foundational material base for the sequential phases of van Hiele learning, allowing 

students to investigate the subject during a directed orientation phase and subsequently 

construct new concepts based on their prior knowledge. In Level 2, students are also beginning 

to develop the ability to 'construct figures' (Gawlick, 2005, p. 370).  

3.0 VERGNAUD’S CONCEPT OF SCHEMA  

The study of learning processes is fundamentally connected to the evolution of cognitive 

psychology, which has primarily concentrated on child development and, more generally, the 

growth of living beings. The concept of schema (with the plural forms being schemata or 

schemas) holds significant importance in the field of cognitive psychology. Its origins can be 

traced back to ancient Greece, where it was considered in a more general context rather than 

the specific framework utilized in cognitive psychology. According to Corcoran & Hamid 

(2022):  

A schema (plural: schemata, or schemas), also known as a scheme (plural: schemes), is 

a linguistic “template”, “frame”, or “pattern” together with a rule for using it to specify 

a potentially infinite multitude of phrases, sentences, or arguments, which are called 

instances of the schema. […]. The Greek word ‘schema’; was used in Plato’s Academy 

for “[geometric] figure” and in Aristotle’s Lyceum for “[syllogistic] figure”. Although 

Aristotle’s syllogistic figures or “schemata” were not schemas in the modern sense, 

Aristotle’s moods were.  

The concept of schema holds a central position in Vergnaud's theory of conceptual fields (e.g., 

1988, 2009). The theory of conceptual fields is the "reference theory" for many authors 

concerning systems of representation (Hoyles & Noss, 1996; Kaput, 1992). As previously 

discussed, schemas "coordinate and organize" the observable patterns of a subject's activity 

with their mental representations. In the words of Vergnaud (1998, p. 172), the concept of 

schema "is more general and relates to different kinds of activities." Examples of schemas for 
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Vergnaud include telling a story, constructing a political speech, speaking a foreign language 

fluently with certain specific mistakes and accents, and engaging in dialogue with a group of 

people. These are what he calls verbal schemes or social schemes (Vergnaud, 1998, p. 172).  

In Rabardel’s publication "People and Technology: a cognitive approach to contemporary 

instruments" , are identified various types of utilization schemes for a tool (Rabardel, 1995, 

p.84): (a) Usage schemes related to “secondary tasks”: schemes oriented towards managing 

the tool (b) Instrumented action schemes which consist of wholes deriving their meaning from 

the global action which aims at operating transformations on the object of activity: schemes 

oriented towards executing a specific goal. (c) Instrument-mediated collective activity schemes 

which concern the specification of the types of action or activity, of the types of acceptable 

results etc. when the group shares a same instrument or works with a same class of instruments: 

schemes concerning the coordination of actions of individual persons as a contribution to the 

success of common goals. Concerning the notion of 'instrumental schemata' (Patsiomitou, 

2025) it is evident that both students and educators develop/cultivate, foster and enhance 

['instrumental'] schemata, indicating that these schemata are dynamic and undergo continuous 

development within a digital or AI environment (e.g., Patsiomitou, 2024 a, b, c, 2025). These 

categories of schemas play a crucial role in the field of education, especially within the context 

of mathematics education. This is due to the fact that when a student encounters a novel 

mathematical scenario in class, they are able to recall a set of schemas that they have previously 

developed. These situations result in the creation of novel mathematical schemas or the 

enhancement of existing ones. For instance, when some students collaborate to solve a problem 

in a DGS environment, they may develop social, verbal schemas, as well as schemas related to 

mathematical concepts or instrumental schemata. Students or educators are able to create 

instrumental schemata throughout the process of instrumental genesis (Rabardel, 1995; 

Trouche, 2003, 2004). The concept of schema is the most important concept in cognitive 

psychology (Vergnaud, 1998, p. 172). According to Vergnaud, a mental schema consists of 

four basic components (1998, p.173): (a) goals and anticipations to achieve potential objective 

goals, (b) rules-of-action (: the rules that generalize the sequence of actions to be taken, 

typically in "if... then" forms that contain the operational invariants used by the subject in 

practice), (c) operational invariants, which include the concepts of theorem-in-action and 

concept-in-action that form the cognitive content of schemas, and (d) inference possibilities 

(:the outcomes determined based on the information available to the subject).  

The dynamic diagrams’ reconfiguration through the complex synthesis of combinations of 

transformations can lead to a continuous interaction of dynamic figures’ discursive, visual and 

operational apprehension (e.g., Patsiomitou, 2008b, c, 2010, 2011a, 2012a, b, 2013, 2014, 

2018b). In the words of Dina van Hiele (1984) the diagram goes through a metamorphosis as 

a result of the manipulations of reconfigurations “followed by a phenomenological analysis 

and an explicating of its properties: it becomes what we call a [dynamic] geometric symbol” 

(Dina van Hiele in Fuys et al., 1984, p.221). The meaning of ‘procept-in-action’ (Patsiomitou, 

2019b, c) for the DGS environment could thus support the appearance of operational invariants 

and the development of instrumental schemata during the problem-solving situation as well as 

influence students' interactions with a dynamic object (Fig. 4). As a dynamic synthesis changes 

in the linking pages, the (student-) user's cognitive structure undergoes a transformation 

influenced by their organized instrumental schemata regarding dynamic objects. 
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Figure 4. A procept-in-action (Patsiomitou, 2019b, p. 44) during instrumental genesis leading 

to instrumental schemata (an adaptation for the current study) 

In the context of the discussion regarding the process of rediscovery-reinvention of concepts 

through representational systems, it is necessary to answer certain questions, such as 

(Vergnaud, 1990): what is the nature and function of a new concept, a new process, a new type 

of reasoning, a new representation? When students encounter a novel situation, they draw 

upon the knowledge they have acquired from previous, less complex experiences to adapt to 

the new context (Vergnaud, 1988, p.141). This process is related to Piaget's processes of 

accommodation and assimilation (e.g., Piaget, 1975/1985). The development of conceptual 

frameworks in mathematics relies on the activities carried out by students both individually 

and as part of a group or class, as well as their engagement with other members of the school 

community [especially with the educator and their classmates].  

4.0 DGS: A GENERATOR OF “ALIVE” OBJECTS  

In my research titled "An 'alive' DGS tool for students' cognitive development" (Patsiomitou, 

2018b), I reported the subsequent advantages and effects on students' cognitive processes 

related to DGS software (e.g., the Geometer’s Sketchpad), which were also redefined in 

Patsiomitou (2019c, p. 74):   

• A first and very important effect on students’ thinking stems from the Sketchpad 

software allowing the user to create sequential linking pages so that the whole Sketchpad 

file becomes an “alive book” (Patsiomitou, 2005a, p. 63, in Greek; Patsiomitou, 2014, 

2018b). The “alive digital representations” (Patsiomitou, 2005a, p. 67) function, which 

makes the whole figural diagram “alive”, giving the students the potential to focus their 

attention on simultaneous modifications (and transformations) of objects on the screen 

(Patsiomitou, 2005a, p. 68), also yielded important results during my investigations. 

According to Sketchpad Help system “Over time, you may want to add additional pages 

to a document. For example, you may want to organize a series of sketches that develop 

an argument; you may want to present an activity that has several parts; or you may want 

to explore a conjecture in more depth than would be possible in a single sketch”.  

http://www.ijrehc.com/


International Journal of Research in Education Humanities and Commerce 

Volume 06, Issue 03 "May - June 2025" 

ISSN 2583-0333 

 

www.ijrehc.com                                Copyright © The Author, All rights reserved Page 351 
 

• A second important effect on students’ thinking stems from the dynamic 

transformations in a DGS environment, a way of modifying an object on screen. We can 

change a figure’s orientation, a figure’s size or we can reconfigure it from its parts 

(Duval, 1995a, b, 1999). Translations, rotations, and reflections are the kind of geometric 

transformations that preserve the size and shape of a figure. Any transformation (i.e. 

rotation, translation, reflection) of an object on screen produces a similar or congruent 

object image on screen. If we drag any point of the object the same transformation occurs 

to the image object that means that the image object (or reversely) follows the dragging 

results that refer to the object (e.g., Patsiomitou, 2009 a).  

• A third important effect on students’ thinking occurs from dynamic constructions, 

that are the constructions created in a DGS environment. Daniel Scher (2002) in his study 

describes the characteristics of a traditional static construction in contradiction to a 

dynamic construction. The static constructions possess two characteristics as Scher 

(2002, p. 1) states: “they are static and particular”. In Scher’s (2002) words “the dynamic 

objects can be moved and reshaped interactively […and] a single on-screen image 

represents a whole class of geometric objects” (p.2).   

• A fourth important effect on students’ thinking occurs from the construction of 

custom tools /scripts (e.g., Patsiomitou, 2005a, b, 2006 a, c, d, e, f, g, 2007a, b, c, e, 

2008d, 2009 b, c, 2012a, b, 2014, 2020c, 2021b, 2022a, b, c, d, 2023a, b). As Sträßer 

(2001) supports: 

“Apart from practical considerations (like exactness and ease), DGS-use can be 

structured according to conceptual units by means of macro-constructions. DGS-

constructions are not bound to follow the small units of traditional drawing practice. 

Offering new tools that are unavailable in paper and pencil geometry, DGS-use widens 

the range of accessible geometrical constructions and solutions. If these tools become 

everyday instruments in the hands and minds of the user” (p.332). During the 

construction of a custom tool a user determines the order the dynamic objects have to    

be created. This is in accordance with what Balachef & Kaput (1997) support: “The order 

in which actions take place could become arbitrary in the eyes of users, which can have 

significant consequences. [...] This demonstrates the impact of the orientation of the plan 

which is in general forgotten in elementary geometry, but is recalled to the user as a 

result of the sequencing of actions (Payan 1992)”. (p.13). I shall further discuss the 

meaning of custom tools in the next section as instrumental schema generators.  

• The fifth [and most] important effect on student’s thinking stems from the DGS 

software’s dragging facilities. Sketchpad’s dragging behavior transforms an object on 

screen moving that object on the screen. According to Laborde (1994, cited in Scher, 

2000, p. 43):   

“The idea of movement in geometry is not new—the Greek geometers devised various 

instruments to describe mechanically defined curves—but the use of movement was 

nonetheless ‘prohibited in strict geometric reasoning’ for reasons that were more 

metaphysical than scientific. The 17th century marked a break with Greek tradition, and 

the use of movement to establish a geometric property or carry out a geometric 

construction became explicit. […] This idea was first expressed in school geometry by 

the replacement of the geometry of Euclid’s Elements by the geometry of transformations 
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(which continues to be the only kind of geometry taught in some countries)—quite some 

time, one must point out, after the characterization of geometry as the study of the 

invariants of transformation groups, and also quite some years after a daring proposition 

made in France by Meray (Nouveaux éléments de géométrie, first edition 1874) [...] 

Meray’s idea was to teach geometry through movement: translational movement allowed 

for the introduction of the notion of parallelism; rotational movement led to 

perpendicularity. (pp. 61-62, French original, Scher, 2000, p. 43) 

A special report has been prepared regarding the customized tools, that have intrigued me and 

captured my attention since 2005, when I employed them extensively to create new geometrical 

and mathematical tools to fulfil my objectives. 

5.0 DG CUSTOM TOOLS AS INSTRUMENTAL SCHEMA GENERATORS  

The idea of scripting/constructing custom tools was to create “personal tools”, or tools that a 

student could use for his/ her needs. In my view, the subsequent statement could be considered 

a definition for a custom tool (Patsiomitou, 2008d, Patsiomitou, 2018b, p.51):  

Custom tools are ‘alive’ encapsulated entities developed within a DGS environment, 

serving as reference points for the organization, retrieval, and reversal of information. 

This functionality aids in anticipating and manipulating action schemes during the 

instrumental genesis process. Furthermore, a custom tool can act as a catalyst for 

students' cognitive growth and the enhancement of their abstract thinking skills.  

In the words of Scher (2000, p.45) “Jackiw viewed the scripting feature of Sketchpad as a way 

for students to start from the “atoms” and gradually build their own collection of reusable 

multi-step constructions”. Kadunz (2002) also states that “to the user, the macro function is a 

black box producing defined output from defined input” (p. 74). By constructing a custom tool, 

we can help students to extend the capacity of their working memory, since the knowledge, the 

student must retain, is reduced. Working memory holds only the most recently activated, or 

conscious, portion of long-term memory, and it moves these activated elements into and out of 

brief, temporary memory storage (Dosher, 2003 as referenced in Sternberg et al., 2012). 

 

 
 

Figure 5a: The initial phase 

of constructing the 

Pythagorean Tree Generator-

[1] custom tool  

Figure 5b. The 2nd step of 

construction involves utilizing 

the Pythagorean Tree Generator-

[1]  

Figure 5c. The 3rd step of 

construction  
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Nonetheless, the basic underlying notion is that a student is able to codify a construction and 

the concrete codification shape what the student can do when s/he will encounter a new 

situation related to the concrete that has been abstracted and codified with the use of custom 

tool.  

 

Figure 6a. Creating the Generator- [2] custom tool “LEVEL 2” incorporating measurements 

and calculations  

I shall provide an example to illustrate it. In order to create a Pythagorean tree for each side of 

the right-angled triangle, it is necessary to develop the Pythagorean Tree Generator- [1] (refer 

to Fig. 5a) and store it as a custom tool [or create every step from scratch]. This procedure will 

be reiterated to build the second and third steps, as depicted in the figures above (Fig 5 b, c). 

The actions we could accomplish are the following: (a) constructing the custom tool “The 

Pythagorean Tree Generator- [1]” (b) implementing the custom tool to the sides of the triangle 

(c) constructing a custom tool from the 3rd step of construction of  the Pythagorean Tree 

(Fig.5c), encapsulating the previous construction (d) implementing the latest custom tool 

iterating the process. This way of construction is in a more abstract level than the previous way, 

as the student is pushed through the process to a reification of sequential nested objects 

(Patsiomitou, 2019c, p. 80). This action has a presupposition: that students are aware 

beforehand that a side of a triangle is a segment or comprehend the dual function of the objects 

(van Hiele level 3). Moreover, the orientation of the sides may pose a cognitive obstacle, 

especially for students at van Hiele levels 1 or 2. This is because students very often fail to 

recognize the modification of the orientation of tools due to a lack of place way apprehension 

during the instrumental decoding process (Patsiomitou, 2011, p.362). The custom tools help 

them to simplify the construction process. A script /custom tool combines in a concrete and 

sequential order the steps that have been used to accomplish the construction. For example, if 

someone construct a square, s/he can save the concrete construction in a custom tool which can 

repeat the construction in the concrete way used by him/her [the creator of the custom tool], 

meaning that is processes the objects in the same sequence of the predefined instrumental 

trajectory (Patsiomitou, 2021 a, b). The dragging of the custom tool constructed on screen 

follows the rules that refer to the primitives and commands incorporated into the custom tool 
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(i.e. if we have measured angles or segments, or calculated a ratio, during our construction of 

the tool, then the concrete measures and calculations are repeated any time we implement the 

custom tool). If we drag the tool (Fig. 6a, b), the measures follow the increasing or decreasing 

of the length of the segments and angles (e.g., Patsiomitou, 2005a, p.83).   

 

Figure 6b. Implementing the Generator- [2] custom tool  

As a result of the construction and application of a custom tool the direct perception of the user 

is attained with regards to the steps in the development of the construction pertaining to (see) 

(e.g., Patsiomitou, 2007a, 2014, 2018a, b, 2019a, c): 1) the repetitions in the measurements or 

calculations of the areas of initial shapes 2) the developmental way of the construction of the 

figure  and 3) its orientation towards the sequential steps of the construction on the screen’s 

diagram or in successive pages of the same file. If we have constructed a custom tool which 

incorporates the use of iteration processes, in the case of Geometer’s Sketchpad the application 

of the custom tool will include the iteration at every new step during every new application of 

the custom tool. Mariotti (2000) declares that in a construction generated using dynamic 

geometry software “[…] the elements of a figure are related in a hierarchy of properties, and 

this hierarchy corresponds to a relationship of logic conditionality” (p.27). This is in 

accordance with what Jones (2000) points out that “dynamic geometry systems (DGS) would 

seem to have the potential to provide students with direct experience of geometrical theory, 

and thereby break down what can be an unfortunate separation between geometrical 

construction and deduction” (p.56).  

6.0 PYTHAGOREAN TREES AS FRACTAL CONSTRUCTIONS  

The dynamic geometry software Geometer's Sketchpad includes the "Samples" folder, which 

contains the "Geometry" subfolder, within which is the software's fractal’s gallery. On the first 

page of the multi-page file of the fractal gallery, the dynamic Pythagorean tree appears. In this 

context, the point that triggers the movement of the branches of the Pythagorean tree is located 

at the vertex opposite the hypotenuse. As this point moves, the branches of the tree rotate, 
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generating new, smaller branches in accordance with the fractal construction process. This 

motion represents the reproduction of the original structure of the Pythagorean tree at a reduced 

scale with each iteration, and the process continues to unfold as a fractal structure. The details 

regarding the construction of the Pythagorean tree were presented at the PRISM II conference, 

focusing on Construction and Iteration: mathematical generalization in Dynamic Geometry. 

As it is reported: To iterate an action is to repeat it some number of times. In geometry, an 

iteration uses an operation performed on one set of geometric objects to produce a new set of 

objects that share the same relationship. You’ve just constructed squares on the three sides of 

a right triangle. You’re now going to iterate this right-triangle construction to produce a tree-

like construction whose branches contain smaller and smaller copies of your triangle and three 

squares. For further information, please refer to the description of the Pythagorean tree 

construction available at the following link:  

https://learningcenter.dynamicgeometry.com/PythagoreanTheorem.htm.  

Figure 7 below is incorporated in my book (Patsiomitou, 2009b, 2022a), where I detail the 

sequential instrumental trajectory (Patsiomitou, 2021a, b), I used for the construction, using 

linking visual active representations. My primary goal was to investigate the ways in which 

the software assists students in creating patterns associated with the repetition of objects during 

the construction process, the formulation of measurements and calculations, and the positioning 

or reorientation of shapes on the plane.  

 

Figure 7. Linking the sequential phases of constructing the Pythagorean Tree (Patsiomitou, 

2009b, 2022a)  

Furthermore, I examined the generalization of the process, considering the dynamic 

relationship between the fractal construction and the measurements/calculations in a linked 

table, along with its connection to graphical representations.  Ghosh (2016) asserts that “One 

of the foundational aspects of developing algebraic thinking is the ability to generalize. 

Research describes two kinds of generalization (Kinach, 2014), namely, generalization by 

analogy and generalization by extension. Generalization by analogy refers to observing a 
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pattern, extending a sequence to the next few terms and being able to relate a particular term 

of the sequence to its previous terms. This kind of generalization requires recursive thinking. 

Generalization by extension, on the other hand, refers to writing a formula for the nth term of 

a sequence – which requires explicit thinking”. (p.59). The values in the table are updated when 

the fractal object is moved, allowing us to visualize them in a graphical representation. In the 

following diagram, the interconnection between (a) a fractal Pythagorean tree (shape), (b) the 

table of measurements and calculations, (c) the graphical representation of the sequential areas, 

where the pre-designed sliders allow control of the epsilon-delta definition, the limit of the 

sequence, and (d) the symbolic formula of the definition, is shown. Through the activity, the 

students are called to assemble the components of the definition and approach as closely as 

possible the rigorous definition of the limit of a sequence (Fig. 8). 

 

Figure 8. Linking Visual Active Representations using a Pythagorean tree structure 

(Patsiomitou, 2005a, pp. 81-82, 2007a, 2014) 

If we use the visual representation of the proof of the Pythagorean theorem to repeat the 

construction process on each branch, we will arrive at a fractal construction of the Pythagorean 

tree. The structure of the figure sequentially and in reduction remains the same as the 

construction continues. Thus, repetitions of the original structure are created, branching 

Pythagorean visual proofs, which, however, continuously lead to ever smaller figures, 

triangles, and squares. Therefore, the sizes of sides, perimeters, areas, angles, arcs, etc., 

continuously decrease. What is the final value of the area of the square at the end of each 

branch? What does this area tend to? What is the ratio of two consecutive measurements? For 

the needs of the research process [for the branches of a Pythagorean tree], I created an 

appropriate custom tool which used the properties of the transform-iteration command 

(Patsiomitou, 2005a, 2007a). 

7.0 THE PYTHAGOREAN TREE CONSTRUCTION USING THE ITERATION 

COMMAND 

I will begin by describing the Generator- [3] custom tool, which is represented by an irregular 

pentagon (Fig. 9a). We create a square labeled ABCD and identify the midpoint E on side CD. 
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Figure 9a. The Generator- [3] custom tool  

Using E as the center and a radius that is half the length of the square's side, we draw a 

semicircle extending outside the square. By selecting any point on this semicircle and 

connecting it to points C and D of the square, a right triangle is formed. If we specifically 

choose the midpoint of the semicircle, the resulting triangle will be both right-angled and 

isosceles.  

 

Figure 9b. Implementing the iteration process to the Generator- [3] configuration 

The angle CFD measures 90 degrees, as it is an inscribed angle that subtends a semicircle. 

[Theorem1: An inscribed angle subtends a semicircle if and only if the angle is a right angle 

and Theorem 2: The measure of an inscribed angle is half the measure of its intercepted arc]. 

To create a Pythagorean tree, we will repeat this process, but instead of starting with segment 

AB we will begin with segment CF. This process will produce another smaller square "to the 

left." Then, we will repeat it again, this time starting from ED, to construct another smaller 

square "to the right”. What is the relationship between the lengths of the sides of successive 

squares? The lengths of these sides form a geometric progression, decreased by a constant ratio, 

the ratio of one of the congruent sides of the isosceles right triangle to the hypotenuse (since 

the legs of the isosceles right triangle are in ratio of 1:√2 to the hypotenuse). Therefore, each 

successive square has a side length equal to 1:√2 times that of the previous one. Throughout 

the iterative construction process, it becomes evident that all the resulting triangles possess 

both isosceles and right-angled properties. This iterative pattern reveals a consistent 

mathematical relationship among the triangles, squares, and other geometrical elements 
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involved. In particular, when we calculate the lengths of the sides of these shapes, we observe 

that they decrease according to a geometric sequence, with each subsequent side being reduced 

by a factor of 1:√2 in relation to its previous one. So, if the first square’s side is equal to a then 

the next square’s sides are: a, a:√2, a:2, a: (2√2)…  

 

The construction of the Pythagorean tree will be displayed, along with the measurements and 

calculations for the first nth iterations. Upon examining the properties of the triangles, it is 

evident that they consistently maintain their isosceles and right-angled characteristics 

throughout the iterative process. The lengths of their sides decrease in size progressively with 

each iteration, adhering to a defined mathematical sequence. 

 Regarding the measurements and calculations, the dimensions of the figures determine a 

geometric progression, with each subsequent square's side length being reduced by a specific 

ratio compared to its previous one. The hypotenuse of every isosceles and right-angled triangle 

is equal to the side of the square that has been produced. Moreover, the perpendicular sides of 

the triangles are equal with the sides of the squares that are generated during the iterating 

process.   

As it is obvious if the side DC =a then FC=FD= a:√2. This observation has to do with the 

successive square side lengths. What about the 20th iteration? The general formula for the side 

length of the square at the nth iteration is:  Sn=a :(√2)n. For the 20th iteration is S20=a :(√2)20= 

a :1024. From the calculations shown in the table, we can observe: (a) The side lengths of the 

squares decrease progressively while maintaining a specific pattern. (b) The relationship 

between successive side lengths follows a fixed geometric ratio. This decreasing follows the 

above-mentioned rule, enabling us to predict the side length at any given iteration. This 

confirms the fractal-like structure of the Pythagorean tree, where each new square is reduced 

by a predictable factor. With regard to the areas of the successive squares we can prove that:  

if n→∞ then  
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8.0 AN INNOVATIVE APPROACH TO THE PYTHAGOREAN TREE IN 

EDUCATIONAL CONTEXTS 

To initiate the iteration process without employing Generator tools, we start by creating a 

square, and on one of its sides, we place a right isosceles triangle. By iterating this initial shape 

seven times, we obtain the configuration illustrated in the diagram, where the active 

representations facilitate the counting of tree branches (see Fig. 10a). 

 

Figure 10a. Active representations facilitating the counting of the tree branches  

 

Figure 10b.  Generation of tabularized measurements and calculations by utilizing the iteration 

process  

When we calculate the area of the square and the area of the right triangle, as well as the ratio 

of their areas, we observe that the measurements and calculations are repeated and tabulated 

(Fig10b). This repetition aids in understanding the sequence of terms as a decreasing geometric 
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progression. We know that if the area of the square is a², then the area of the right and isosceles 

triangle is a²:4. Therefore, the total area of the Generator- [3] configuration is E₁ = (5a²):4. The 

perimeter of the square is 4a. Therefore, the length of the vertical side of the right-angled 

triangle is x = a√2.  This implies that the total perimeter of the irregular pentagon (: Generator- 

[3] configuration) is P₁ = 3a + 2a√2. 

 

Figure 10c. Implementing the iteration process two times 

 

Figure 10d. The visualization of the repetition of the Generator- [3] irregular pentagon 

In the figure 10d, we observe the appearance of three distinct sizes of the Generator- [3] 

irregular pentagon, which warrants further investigation. Specifically, we must consider: What 

are the reasons for their similarity? What is the ratio of their similarity? Is this ratio repeated? 
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The iterative process utilized in the figure, leveraging the software's capabilities, produces a 

figure (Fig. 11a) where various structural shape units appear, such as irregular octagons [and 

heptagons or other polygons] that partially intersect/overlap one another. The configurations 

of irregular octagons, heptagons, and polygons in general, as depicted in the illustration (Fig. 

11a, b), arise from the visualized empty spaces [or negative spaces]— spaces which many 

children find challenging to perceive as figures. This challenge occurs because such shapes 

often constitute sub-figures (i.e., components of larger shapes) or overlap with one another, 

among the branches of the tree. It is essential for the student to direct their attention to one of 

these shapes, and gradually they may begin to identify all the smaller, similar polygons of 

reduced scale that emerge through the recursive process. Additionally, is there a discernible 

pattern in the distribution of these irregular octagons across the plane? In these illustrations, 

we observe the repetition of empty spaces [/negative spaces] shaped like irregular heptagons 

and cardioids, which also follow a certain regularity that warrants further examination). As the 

figure expands, these units continuously decrease in size while increasing in number. This is a 

subject that requires further investigation: How does their number increase? What type of 

sequence regulates their development? The orientation of figures can significantly influence 

students' identification of shapes. Throughout the process, there is an increasing capacity and 

tendency to consider and analyze the spatial configuration of shapes by examining their 

individual components and the relationships between those components, along with an 

improved, enhanced ability to comprehend and apply formal geometric principles in analyzing 

and evaluating the interconnections and the interrelations of figures’ properties.  

 

Figure 11a. Irregular heptagons and octagons formed within the empty spaces between the 

branches 

The screenshot (Fig. 11a) from Geometer's Sketchpad illustrates the Pythagorean Tree, which 

has been generated through iterations utilizing Generator-3. We will now analyse the properties 

of the figures[/polygons] that are formed in the empty/negative spaces between the branches. 

We observe the repetition of: (a) Irregular heptagons of cardioid shape (b) Irregular octagons 

(c) Irregular hexagons.  
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• Irregular heptagons of cardioid shape: 1P₁, 2P₂, 4P₃, 6P₄, 10P₅ (+2 overlapped) ... as 

we observe, follow a concrete pattern, since each term results from the sum of the previous 

terms:  2 + 4 = 6, 4+6 = 10. Therefore, the next term will be 6 + 10 = 16.  If a1=1, a2=2, a3=4, 

a4=6, a5=10, a6=16 …. then an=an-1 + an-2 

 

Figure 11b. Irregular heptagons and octagons formed within the empty spaces between the 

branches 

• Irregular octagons that contain the heptagons and partially overlap each other. The 

outlined octagons possess specific properties. In general, the initial observations that emerge 

relate to their fundamental geometric characteristics: they are all similar to each other, and the 

ratio of their similarity is determined by the calculations of their perimeters. Indeed, we observe 

that their similarity ratio is 1.41, which is equivalent to the square root of 2 (√2). As per the 

theorem which asserts that 'the ratio of the areas of similar polygons is equivalent to the square 

of their similarity ratio,' the ratio of their areas is (√2)² = 2. 

 

Figure 12. Irregular octagons outlined within the Fractal Pythagorean Tree  
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The octagons follow a regular pattern as they decrease in size and are reiterated within the 

figure: (a) a central octagon is partially overlapped by two smaller octagons on each side. (b)  

four smaller ones are formed, followed by six even smaller ones, and so on. In this way, a 

sequence of terms emerges: 1, 2, 4, 6, 10... and each term is the sum of the two previous terms 

for the terms a₃, a₄, etc. That is: 6 = 4 + 2, 10 = 4 + 6… Therefore, the next term will be 16. 

Thus, the terms are as follows: 1, 2, 4, 6, 10, 16, 26, 42…………. 

 

Figure 13. Concentrating on the figures and subfigures of irregular octagons  

 

Figure 14 a, b. Concentrating on the characteristics of irregular octagons 

The octagon consists of 3 repetitions of successive Generators-[3], which can be easily 

calculated if we initially subtract the area of the inner irregular heptagon. If ‘a’ is the side of 

the initial square, then its area is E= a2 and the area of the right-angled triangle is E1=E/4. 
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Similarly, Ε2= 2Ε1= 2 * Ε/4 = Ε/2, Ε3= Ε2/4 = Ε/8, Similarly, Ε4= Ε2/2 = Ε/4, Ε5 = Ε4/4= Ε/16 

και Ε6= 2*Ε5= Ε/8, Ε7= Ε6/4= Ε/32 και Ε8= 2Ε7= Ε/16.  Consequently, we reach the subsequent 

sequence of terms (Table 2).  

 

The areas of the rectangles and isosceles triangles form a geometric progression with a ratio 

l=1:2 as do the successive areas of the squares. The heptagon P1 inside the octagon consists of 

the following areas P1= Ε1+ 2Ε4+3Ε8 = Ε/4 + 2 Ε/4 +3 Ε/16= 15Ε/16. Therefore, the total area 

of the octagon is equal to 
41E

16
+

15E

16
=  

56E

16
.  

 

Figure 15. Concentrating on the properties of the irregular hexagons 

A closer look at the figure 15 reveals the repetition of irregular hexagons symmetrically 

positioned within the overall shape, each with specific side lengths, perimeters, and areas. For 

instance, the irregular hexagon R1 is composed of subfigures whose areas, perimeters can be 

easily determined. 

9.0 ADDITIONAL GEOMETRIC PROPERTIES OF THE PYTHAGOREAN TREE   

The Pythagorean tree possesses numerous geometric properties that have been examined by 

many researchers and teachers who design classroom activities to attract the interest of their 
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students. In the subsequent discussion, I shall present several of these properties that are of 

interest for developing proof procedures. It is of particular interest if these properties also can 

be extended when the figure of the right triangle is scalene (i.e., all sides are unequal).  

 

Figure 16. A circle centered at point C that intersects the vertices of the Pythagorean Tree 

Generator. 

We observe that the triangle KCT is congruent to triangle ZCP (since ZP=KT, TC=CP, 

<T=<P= 45ο). Thus, ZC=CK. Similarly, BC=CA. Likewise, ZA=KB (triangle ZAP= triangle 

KTB since they have ΖP=KT, PA=TB, <ZPA=<KTB=135o). Points Z, C and A are collinear 

(: Three or more points are said to be collinear if they all lie on the same straight line) because 

quadrilateral ZKAB is a rectangle, hence its diagonals bisect each other at C. Therefore, there 

is a circle with center C passing through the vertices Ζ, Κ, Α and Β. Similarly, it can be shown 

that the circle also passes through the other vertices L, and M (Fig. 16). 

 

Figure 17. Concentric circles and figures’ axes of symmetry 
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A central axis of symmetry can be recognized, which pertains to the central portion of the tree 

[in addition to two more for the specific part of the tree located at the branches extending to 

the right and left of the central axis]. Moreover, besides the initial circle, which has been shown 

to intersect all the vertices of the original figure, it can be easily demonstrated that the iterative 

process results in the creation of additional concentric circles that also intersect the vertices of 

the squares formed during the construction (Fig. 17). Furthermore, the axes of symmetry adhere 

to the same principle [as previously stated] as the branches of the figure are expanded (1, 2, 4, 

6 etc.).  

 

Figure 18a. Rotating the irregular heptagon for 45 degrees by center M 

Of particular interest is the presence of transformations in the overall figure (rotations, 

reductions or enlargements under scale, reflections) which we will briefly review below (Fig. 

18a, b, c). The arrangement of the heptagons within the figure is something that gained my 

attention as it is of particular interest. A rotation of the central heptagon by 45° produces a 

mirrored image of the figure above, while a rotation by -45° generates the mirrored form below. 

Notably, the lower image undergoes a reduction by a similarity ratio of 0.5, while the upper 

image is enlarged by a similarity ratio of 2. 

 

Figure 18b. Rotating the irregular heptagon by center M for -45 degrees 
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Figure 18c. Dilating the irregular heptagon 

Gagné, Briggs & Wager (1992) proposed a systematic instructional design process “The Events 

of Instruction and their relation to processes of learning”, following a behaviorist approach for 

the learning process. Even though I was a constructivist teacher and researcher, I find the 

“gaining attention” principle to be relevant to every moment of my didactic life. In class, there 

is nothing more important than gaining the attention of the students who think that Geometry 

is hard and not “nice”. By giving them “beautiful mathematics” to construct, I used to “gain” 

their attention for what follows: constructing meanings. The instructional design process was 

designed in phases: what I did towards preparing the lesson before the instruction was 

delivered; what the organized topics were of the learning trajectory; what I predicted regarding 

the external stimulation delivered by new representational infrastructures in order to create 

successive stages in the transformation of previously learned material retrieved from the 

learner’s memory etc. To design instruction, I had to establish a rationale for what has to be 

learned in order to be successful. Concluding, students can improve their cognitive abilities, as 

described in the van Hiele theory by constructing, discussing, and utilizing the Pythagorean 

tree structure within instrumental schemata, which will act as case studies for analysis in this 

research study.  

10.0 A FRACTAL-BASED DYNAMIC PROGRAM FOR MATHEMATICS 

EDUCATION: FROM ZERO TO INFINITY 

This section introduces the innovative Fractal-based Dynamic Program (FDP): “Fractals – 

From Zero to Infinity” (Patsiomitou, 2016 a, b, in Greek) which has the potential to serve as 

an informal curriculum cantered around the concept of fractals. It aims to incorporate fractal 

geometry into secondary education by utilizing dynamic mathematical tools. The FDP covers 

a range of mathematical subjects, such as geometry, algebra, pre-calculus, through the 

exploration of fractals, focusing on, experiential learning activities, digital interactive 

resources, and problem-solving tasks. I had submitted my proposal with regard to FDP for 
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approval to the [Greek] Governing Committee of Model and Experimental Schools 

(D.E.P.P.S.) the school years 2011-12, 2012-13 and 2013-14. The program consisted two hours 

of lessons each week, scheduled after school. Instruction took place in a classroom that featured 

an interactive whiteboard, enabling students to engage in small group experiments while 

sharing the computer mouse. The following discussion of FDP is a brief presentation of the 

unofficial curriculum, concerning my proposal approved by D.E.P.P.S., and accompanied by a 

brief summary of the Program I designed and implemented. The objective of the Program 

"Fractals – From Zero to Infinity" was to offer students the chance to experiment, investigate, 

comprehend, and relate mathematical concepts they had previously encountered in the 

mathematics classroom or through online resources. The program offered a chance for a deeper 

exploration and an enjoyable approach through interactive activities aimed at cultivating a 

passion for mathematics in students. Furthermore, students participated in the construction of 

fractal objects using traditional paper-and-pencil methods, acknowledging the limitations of 

static media and traditional geometric tools for creating fractals (realizing also the inadequacy 

of traditional geometry tools for creating these objects). They frequently compared the 

geometric tools they used with the software tools, recognizing the capabilities and limitations 

of each. Subsequently, students became familiar with the concepts of transformation (e.g., 

rotation, reflection, translation by vector, and iteration). They examined the similarities and 

differences between these concepts and the concepts of central and axial symmetry as outlined 

in their class curriculum. In this context, they carried out transformation and fractal 

constructions using the dynamic geometry software Geometer’s Sketchpad, learning both the 

software tools and the theoretical concepts simultaneously. The subsequent units aim to present 

fundamental mathematical concepts through the lens of fractals, highlighting self-similarity, 

iterative processes, and the concept of zero and infinity. I developed the FDP Program units in 

six months. As I already mentioned, the instructional resources utilized in the FDP Program 

incorporate several chapters from my book, Learning Mathematics with Geometer’s Sketchpad 

v4 (Patsiomitou, 2009 a, b), updated in 2022 under the title Conceptual and instrumental 

trajectories using linking visual active representations created with the Geometer’s Sketchpad 

(Patsiomitou, 2022a). This book integrates and elaborates on my earlier research, which I have 

presented at conferences in Greece and published in academic journals. Additionally, I acted 

as the instructor for the FDP Program for three years, during which there were slight 

inconsistencies/ discrepancies in the content; nevertheless, the results concerning the students' 

learning were exceptional. Specifically, the constructions and explorations through the 

Geometer’s Sketchpad DGS environment included the following units: 

Unit 1: The Road to Infinity – From Zeno of Elea to Benoit Mandelbrot (An Introductory 

Historical Overview). 

This section represents the Information (inquiry) phase of the FDP Program. It serves as an 

introductory unit that examines the historical development of fractals, following the concept 

from ancient Greek philosophy to contemporary mathematics. The Unit 1 incorporates and 

presents the essential characteristics and fundamental properties of fractals, including self-

similarity, and investigates their presence in the natural world. Through the study of 

mathematical fractals like the Sierpinski Triangle, Sierpinski Carpet, Menger Sponge, and 

Koch Snowflake, students acquire a comprehensive understanding of fractal theory and its 

infinite characteristics. They learn about important mathematicians like Mandelbrot, Georg 

Cantor, and Konstantinos Karatheodory. This unit also introduces students to the concept of 
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fractional dimensions (e.g., Löfstedt, 2008) and their implications for traditional Euclidean 

geometry. The primary components of this unit are outlined in the subsequent research 

questions and procedures.  

• What are fractals? What are the defining properties of fractal objects?  

• What is self-similarity? In what ways does self-similarity appear in the natural world? 

Examples and illustrations of natural fractals.  

• The idea of dimension within Euclidean geometry — The concept offractal) dimension. 

• An overview and introduction to essential mathematical fractals, including the 

Sierpinski Triangle (also known as the Sierpinski Sieve), the Sierpinski Carpet, the 

Menger Sponge, the Koch Snowflake, as well as the Julia-Mandelbrot sets. Fractal 

constructions on the plane using traditional or dynamic geometry tools. 

Unit 2: Tessellations of the Plane 

This section denotes the Directed orientation phase of the FDP Program, as per the phases 

outlined in van Hiele's theory (1986). Students interact with instructional materials through 

meticulously -very thoroughly- designed activities, including folding, measuring, and 

constructing. This phase facilitates the exploration of particular concepts, with tessellations, or 

plane tilings, being a fundamental focus in the study of geometry. This unit introduces the 

concept of regular polygons, inscribed and circumscribed within a circle. Students explore the 

properties of these polygons and their relationship with the number π (e.g., Patsiomitou, 2006f, 

2007c, 2018a).  It also explores the construction of regular polygons and their applications in 

creating tessellations. The construction of regular polygons establishes a basis for 

comprehending symmetry and geometric relationships, which are subsequently utilized in 

more intricate fractal designs. Students investigate both static fractal constructions and those 

generated using dynamic geometry software. The primary components of the Unit 2 are 

outlined in the subsequent research procedures:  

• What are tessellations, also known as tilings, of a plane? How can we create regular 

polygons and tessellations using regular polygons? Additionally, how can we construct 

regular polygons that are inscribed or circumscribed within a circle, particularly in 

relation to the number π (pi)? 

• Digital methods for creating fractal structures, such as utilizing a dynamic geometry 

software environment like 'The Geometer's Sketchpad' or ‘Ultra Fractal’ 

(https://www.ultrafractal.com/). 

• Iterative processes and associated calculations: - Perimeters and areas of fractal figures 

- Sequences, limits, the sum of the initial ‘n’ terms of a geometric progression and the 

infinite sums of geometric progressions.  

• Tessellations and tilings utilizing fractals - Employing regular polygons and fractal 

designs for tiling. 
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Unit 3: Similarity and Self-Similarity 

This unit represents the Explicitation phase of the FDP Program and expands upon the 

principles of geometric transformations, similarity and self-similarity, especially concerning 

fractals. Learners investigate geometric transformations such as rotation, reflection, and 

translation, and their significance in the creation of tessellations. By exploring self-similar 

tessellations, such as those found in reptiles, students gain insight into the iterative 

characteristics of fractals. Furthermore, the unit investigates the transformations of 

pentominoes and their relevance in the creation of tessellations. Calculations related to side 

lengths, areas, and tangram puzzles are explored, both in static and dynamic environments. The 

unit also introduces the construction of Polyhedral nets and Platonic solids, fostering spatial 

reasoning and deeper geometric understanding. The primary components of the Unit 3 are 

outlined in the subsequent research procedures: 

• Geometric transformations, including rotation, reflection, and translation.  

• Utilization of the coordinate plane to construct a two-dimensional geometric figure. 

Determination of the coordinates of these figures and their transformations as the figure 

is altered on the plane. The assessment worksheets will encompass the application of 

transformations in tessellations, employing both dynamic geometry software and 

conventional paper-and-pencil techniques. 

• Transformations of pentominoes and tangram for creating tessellations. The 

construction and calculation of side lengths and areas of these figures utilizing both 

static and dynamic tools. 

• Distinctions between central and axial symmetry as outlined in the official mathematics 

curriculum.  

• Repetitive tessellations and self-similar tessellations, such as those found in reptiles. 

• The construction of polyhedral nets and the theoretical exploration and geometric 

constructions of Platonic and Archimedean solids. 

Unit 3 also includes iterative processes, allowing students to explore algebraic, trigonometric, 

and geometric concepts (e.g., through the use of Baravelle spiral or Dragon Curve). 

Unit 4: Spirals 

This unit represents the Free orientation phase of the FDP Program. Learners utilize their prior 

knowledge to solve problems, address challenges and explore more open-ended assignments. 

In this unit, students construct Baravelle spirals (Choppin, 1994) linked with increasing or 

decreasing sequences plotted on plane (e.g., Patsiomitou, 2005a, 2008g), as well as their 

related geometric properties, such as infinite series (Fig. 19). An examination of the Fibonacci 

sequence and the Golden ratio (φ) reveals their significance in both natural and mathematical 

spirals. The Golden Spiral and Fibonacci Spiral serve as prime illustrations of the relationship 

between fractals, self-similarity, and geometry. Learners also interact with Pascal's Triangle 

and algebraic identities, thereby enhancing their comprehension of mathematical patterns. The 
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primary components of this unit are outlined in the subsequent research questions and 

procedures.  

• What are spirals? 

• Construction of a Baravelle spiral beginning the construction from either an equilateral 

triangle or a square. Calculations of side lengths, perimeters, areas, the sum of infinite 

terms of a geometric progression, the nth partial sum of a geometric sequence are a 

several parts of the instruction. 

• The golden ratio (φ) – The Fibonacci sequence – Golden rectangles. 

• The Golden Spiral, The Fibonacci Spiral. 

• Pascal’s Triangle – Algebraic identities. 

• Golden rectangles and the golden spiral. 

• Fibonacci sequence and Pascal’s triangle. 

 

 

Figure 19: Constructing a Baravelle spiral that links the process to the concept of a 

decreasing geometric progression of successive areas (Patsiomitou, 2005a, pp.77-78) 
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I designed instrumental trajectories for the creation of increasing or decreasing sequences (see 

for example Patsiomitou, 2009b, 2021b). With regard to Baravelle spirals we can create an 

(e.g., Patsiomitou, 2005a, pp.77-78, 2007b, 2008g, 2009b, 2022a): 

• Instrumental learning path A: we start from one side of the triangle and proceed with 

the process within the interior of the triangle. Subsequently, the series of measurements 

and calculations that arises is in a descending order.   

• Instrumental learning path B: We bring parallel lines to the sides of the triangle 

resulting in the formation of larger triangles. Subsequently, the series of measurements 

and calculations that arises follows an ascending order. 

This unit also emphasized the significance of generalization in facilitating algebraic or calculus 

reasoning. 

Unit 5: The Pythagorean Tree Fractal-Modeling 3D fractal objects 

This unit represents the Integration phase of the FDP Program. The Pythagorean Theorem and 

its converse serve as the foundation for this unit. Students engage with the construction of the 

Pythagorean Tree fractal, calculating side lengths, perimeters, and areas of successive triangles 

and squares. This unit provides a hands-on approach (i.e., a practical method) to understanding 

the Pythagorean Theorem and its applications in both static and dynamic geometric scenarios. 

By engaging in iterative fractal processes, learners uncover the significance of self-similarity 

within mathematical relationships. Students synthesize and integrate their knowledge, forming 

a new network of objects and relationships. The primary components of this unit are outlined 

in the subsequent research questions and procedures.  

• The Pythagorean Theorem – The converse of the Pythagorean Theorem 

• Construction of the Pythagorean Tree fractal. Calculations of side lengths, perimeters, 

and areas of successive triangles and squares, etc. 

• Modeling 3D fractal objects-Polyhedral nets for Platonic and Archimedean solids. 

• Engaging students in practical activities where they design kites using Baravelle spirals 

or Sierpinski triangles, as well as constructing three-dimensional models. 

This final unit applies the concepts learned throughout the FDP Program to solve real-world 

problems involving fractal objects. Students create polyhedral nets for Platonic and 

Archimedean solids, utilizing these geometric forms to investigate real-world applications that 

foster creativity and practical problem-solving abilities (for instance, designing kites). The unit 

concludes with the construction of 3D models. For example, the process of modeling a giant 

Sierpinski triangle in plane evolves in different phases (Patsiomitou, 2013): Understanding the 

concept of fractal objects and exploring the Sierpinski triangle through visual representations. 

(b) Modeling the Sierpinski triangle on paper within a paper-and-pencil environment, and 

realizing the difficulty of progressing into the interior of the shape through iterative 

processes.(c) Constructing an equilateral triangle, identifying its midpoints, and creating a 

custom tool for the dynamic geometry software Geometer's Sketchpad (Patsiomitou, 2007).(d) 

http://www.ijrehc.com/


International Journal of Research in Education Humanities and Commerce 

Volume 06, Issue 03 "May - June 2025" 

ISSN 2583-0333 

 

www.ijrehc.com                                Copyright © The Author, All rights reserved Page 373 
 

Constructing a Sierpinski triangle in a dynamic environment by applying the custom tool [e.g., 

on an interactive whiteboard].(e) Constructing and repeating the process in the lab with 

physical materials such as cardboard, geometric tools, scissors, glue. (f) Repeating the structure 

of the initial Sierpinski triangle in order to accurately model the structure of the shape on a 

two-dimensional plane. 

 

Figure 20: Collaborating with FDP groups for the modelling process, utilizing a synthesis 

of hand-on activities and digital means (Patsiomitou, 2012c, 2021d) 

The students faced challenges not only in the construction of the tool and its application, but 

also, they encountered difficulty in implementing the appropriate method for the configuration 

of the final form of the Sierpinski triangle in the schoolyard (Fig. 20). This is attributed to the 

existence of a multiform modeling process. Specifically, (a) modeling based on the dynamic 

figure in a static manner, and (b) modeling derived from the mental image they had constructed 

in a dynamic environment by interpreting with natural materials. These various processes 

enabled students to create interconnected visual representations in their minds, facilitated by 

their engagement with the interactive visual representations provided by dynamic geometry 

software. This engagement ultimately enhanced their capacity for structural analysis of shapes 

and the translation of their mental images into tangible representations. Additionally, the 

interaction with semi-preconstructed (or preconstructed) Linking Visual Active Representations 

(e.g., Patsiomitou, 2007a, 2008a, b, c, d, e, f, g, h, 2009 a, b, c, d, e, f, g, h, 2010, 2011 a, b, 

2012 a, b, c, d, 2013a, b, 2014, 2015a, b, c, 2016 a, b, c, 2018a, b, 2019a, b, c, 2020 a, b, c, 

2021 a, b, 2022 a,  b, c, d, 2023 a, b, c, 2024a, b, c, d) in the Geometer’s Sketchpad software 
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contributed to the development of both structural and conceptual abilities, enabling students to 

produce interconnected representations both mentally and procedurally. The idea of solving 

real-world problems has been highlighted by researchers (e.g., Burkhardt, 1981; Pierce & 

Stacey, 2009) as crucial for enhancing the understanding and learning of mathematical 

concepts. On the other hand, it is well-known that applying Mathematics to solve real-world 

problems is a complex process that involves a number of phases, as described by Corte, 

Verschaffel, & Greer (2000): understanding the situation described, constructing a 

mathematical model, working with the mathematical model, interpreting the results in the real-

world context, and evaluating the outcome (p.71). To conclude: the activities and investigations 

related to transformational geometry and fractal geometry enabled the participating students to 

acquire an understanding of the essence of fractal geometry, while also engaging in significant 

generalization tasks that arose from the construction process. This innovative approach 

interconnects various fields of mathematics in an interdisciplinary manner, resulting in a rich, 

dynamic learning experience for students. Consequently, this FDP Program can be 

implemented in parallel with the official curriculum proposed by the Ministry of Education, as 

it combines mathematical theory, dynamic software tools, and practical applications to deepen 

students' comprehension of geometry, algebra, and calculus. The proposed FDP serves as a 

model for enhancing learning experiences in secondary, as well as higher education:   

• Regarding the geometric concepts addressed in the current FDP, the following topics 

were discussed: Operations and calculations with line segments, comparisons and 

calculations of angles, concepts related to the circle, calculations of segment lengths 

and perimeters, equality of shapes (triangles, polygons), similarity of shapes, symmetry 

properties of figures, properties of basic quadrilaterals and the centroid of a triangle, 

hierarchy of quadrilaterals, Thales' theorem and its converse, the Pythagorean theorem 

and its converse, theorems of inscribed angles, theorems of regular polygons, the ratio 

of areas in relation to the ratio of similarity of sides, etc. 

• Regarding the algebraic concepts, addressed in the current FDP, the following topics 

were discussed: Measurement scales, fractions, decimal numbers and the 

interrelationship among the three forms of rational number representations, ratios, 

proportions, properties of ratios [e.g. Invert Endo property a/b=c/d/ then b/a=d/c],  

computations involving algebraic expressions, sequences, geometric progressions, 

exponential functions, limits, sequences, limits of sequences, graphical representations 

of sequences, infinitesimals, the concept of infinity, etc. 

11.0 COGNITIVE PSYCHOLOGY AND TEACHINC STRATEGIES  

The Fractal-based Dynamic Program (FDP) presented here was built upon my direct teaching 

experiences with students. By integrating theoretical mathematics with practical, dynamic 

tools, this project provides a comprehensive and engaging way to learn about fractals, self-

similarity, and their applications. For the FDP Program, as I mentioned, I developed 

instructional plans, activity sheets, and worksheets related to Transformation Geometry, 

intended for use in an interactive learning environment. The activities were meticulously 

tailored to align with the cognitive levels, developmental stages, and ages of the students, 

employing the van Hiele model (e.g., Fuys et al., 1984). Students develop a solid understanding 

of mathematical concepts in geometry, algebra, and pre-calculus, while also enhancing their 

critical thinking and problem-solving skills. They also engage in learning through enjoyable 
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activities and interaction with mathematical tools. The application of fractals serves as an 

excellent medium for investigating the concepts of transformation geometry, including 

rotation, translation, iteration, and similarity. Additionally, it provides an engaging method to 

bridge abstract mathematical theories with visual and digital representations. Furthermore, 

what is the significance of cognitive psychology in relation to the instructions given during the 

FDP? Attention plays a critical role in how students perceive and identify figures, particularly 

in complex or abstract visual tasks. Without focused attention, especially in tasks involving 

sub-figures or empty [or negative] spaces, learners may fail to "see" what's actually present in 

the image. This aligns with theories such as Feature Integration Theory (Treisman & Gelade, 

1980), an excerpt of their study is mentioned here:  

[…] features are registered early, automatically, and in parallel across the visual field, 

while objects are identified separately and only in a later stage, which requires focused 

attention. We assume that the visual scene is initially coded along a number of separable 

dimensions, such as color orientation, spatial frequency, brightness, direction of 

movement. In order to recombine these separate representations and to ensure the 

correct synthesis of features for each object in a complex display, stimulus locations are 

processed serially with focal attention.  

In the field of cognitive psychology, attention serves to filter incoming sensory information. In 

the context of geometric perception or figure recognition and discrimination— particularly in 

tasks involving the recognition and discrimination of figures such as polygons embedded 

within complex visual configurations —students selectively attend) on specific spatial 

characteristics while ignoring irrelevant or overlapping information and details. The Feature 

Integration Theory posits that attention is essential for combining individual visual elements, 

into a unified, coherent object. Complementarily, Gestalt principles (Claudia, 2009) propose 

that perceptual processing tends toward the organization of stimuli into complete and 

meaningful wholes. From an educational standpoint, this suggests that instructing students on 

how to direct their attention—such as through guided discovery or visual scaffolding—can 

significantly enhance their ability to perceive and recognize complex geometric structures. To 

assist students in identifying geometric figures, particularly when they are embedded in 

complex visual contexts, a teacher or an educator may implement a variety of strategies 

grounded in cognitive psychology and educational research.  

In summary, the teacher’s role is to systematically guide, assist, and progressively transfer 

control of students' visual focus, enabling them to analyze complex visual information. The 

objective is to empower students to not only observe but also to understand how to observe 

effectively. In other words, a teacher’s goal is to help students not just see, but to learn how to 

visualize ‘hidden’ information in figures.  

12.0 CONCLUSION  

Looking ahead, the Fractal-based Dynamic Program enhanced with instrumental schemata has 

the potential to be further developed, refined and expanded/broadened to encompass more 

sophisticated topics related to fractals, including the exploration of the Mandelbrot set and 

fractal dimensions. Additionally, there is an opportunity to incorporate advanced technology, 

such as coding and simulation tools, enabling students to generate their own fractals using 

programming languages like Python or JavaScript. Broadening the Fractal-based Dynamic 
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Program to investigate the application of fractals in disciplines such as environmental science, 

engineering, and economics could offer students even greater chances to utilize their 

knowledge. In summary, the Fractal-based Dynamic Program represents an innovative and 

exciting approach to mathematics education, merging profound mathematical concepts with 

practical applications and interactive, experiential (dynamic, hands-on) learning. By engaging/ 

involving students in the study of fractals, the curriculum not only deepens their mathematical 

comprehension but also enhances/ cultivates critical thinking, creativity, and a sense of 

discovery (the spirit of reinvention). I completely concur with the interpretation conveyed in 

the subsequent text: […] fractals could meaningfully be integrated into the school curriculum 

to support students’ conceptual understanding of infinite geometric series, rather than simply 

being a novel add-on to the established curriculum. It is hoped that teachers will find the 

integration of contemporary mathematics into the regular curriculum a valuable pedagogy in 

terms of nurturing students’ curiosity and illustrating the evolving nature of the discipline.” 

(Shriki &Nutov, 2016, p.42)  

Concerning the concept of 'instrumental schemata': both learners and instructors develop 

‘instrumental' schemata, indicating that these schemata are dynamic rather than fixed, 

undergoing continuous development within a digital or AI environment. (e.g., Patsiomitou, 

2024b). Effective instruction in visual attention not only aids in perceptual tasks but also 

cultivates students' capacity for strategic visualization, a critical skill in mathematics education. 

Students have the opportunity to develop their thinking processes, a subject that will be 

examined in a forthcoming study. 
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