QUANTITATIVE ANALYSIS OF URBAN GREEN SPACE AND LOCAL COOLING INTENSITY: A CASE STUDY OF CALABAR MUNICIPALITY, NIGERIA

Authors: Dapo Olatunbosun*, Dickson Ebong, Mayowa Bankole, Frank Adejoh, Chinedu Obasi & Tijesuni Ogunrombi

ABSTRACT

This study investigates the thermal spatial expanse of green space and its cooling influence on the surrounding Land Surface Temperature (LST) of a densely urbanized area in Calabar Municipality, Nigeria using the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) of Landsat 8 satellite remotely sensed data. Image pre-processing and analyses were implemented using the Environment for Visualizing Images (ENVI) and the Aeronautical Reconnaissance Coverage Geographic Information System (ArcGIS) application software respectively. Further statistical analysis using the Statistical Package for Social Sciences (SPSS) was performed. In addition, the Split Window temperature algorithm was applied to retrieve the LST. It was observed that Urban Green Space has a positive impact on the ambient environment. Statistical analysis reveals that there is a strong positive correlation between distance from the green space outer boundary and surrounding temperature, with a value of 0.935 at < 0.1 significance. This implies that as the distance increases from the green space outer boundary, the temperature difference increases progressively.

Keywords: Satellite Remote Sensing, Geographic Information System, Land Surface Temperature, Urban Heat Islands, Split Window Temperature Algorithm.

REFERENCES

  • Ali, M. S. & Doaa, R. J., 2014. Monitoring Vegetation Areas by using Remote Sensing Techniques. International Journal of Computer and Information Technology, 3(2).
  • ARDEN, B. L., 1981. New Equations for Computing Vapor Pressure and Enhancement Factor. Journal of Applied Meteorology, Volume 20, pp. 1527-1532.
  • Arun, M. et al., 2012. Comparison of Support Vector Machine and Maximum Likelihood Classification Technique using Satellite Imagery. International Journal of Remote Sensing and GIS, 1(2), pp. 116-123.
  • Caselles, V., Rubio, E., Coll, C. & Valor, E., 1998. Thermal Band Selection for the PRISM Instrument: 3. Optimal Band Configurations. Journal of Geophysical Research Atmospheres, Volume 103, p. 17057–17067.
  • Claudio, P., 2013. TOA reflectance and NDVI calculation for Landsat 7 ETM+ images of Sicily. Slovak Republic, s.n., pp. 351-354.
  • Fei, W. et al., 2015. An Improved Mono-Window Algorithm for Land Surface Temperature Retrieval from Landsat 8 Thermal Infrared Sensor Data. Remote sensing, pp. 4268-4289.
  • Feyisa, G. L., Dons, K. & Meilby, H., 2014. Efficiency of parks in mitigating urban heat island effect: An example from Addis Ababa. Landscape and Urban Planning, pp. 87-95.
  • Gartland, L. M., 2008. Heat Islands: Understanding and Mitigating Heat in Urban Areas. Routledge, p. 208.
  • Gober, P. et al., 2012. TRADEOFFS BETWEEN WATER CONSERVATION AND TEMPERATURE AMELIORATION IN PHOENIX AND PORTLAND: IMPLICATIONS FOR URBAN SUSTAINABILITY. Urban Geography, 33(7), pp. 1030-1054.
  • Gómez-Baggethun, E. & Barton, D. N., 2013. Classifying and valuing ecosystem services for urban planning. Ecological Economics, pp. 235-245.
  • Gregory, M. J., 1980. A Simple Procedure for Calculating Atmospheric Water Vapor Concentration. Journal of the Air Pollution Control Association, 30(4), pp. 394-394.
  • Harvey, C., 2019. Urban heat islands mean warming will be worse in cities. [Online]
  • Available at: https://www.scientificamerican.com/article/urban-heat-islands-mean-warming-will-be-worse-in-cities/
  • Irons, J. R., Dwyer, J. L. & Barsi, J. A., 2012. The Next Landsat Satellite: The Landsat Data Continuity Mission. Remote Sensing of Environment, Volume 122, pp. 11-21.
  • Javed, M., Yogesh, K. & Bharath, B., 2008. Estimation of land surface temperature over Delhi using Landsat-7 ETM+. J. Ind. Geophys. Union, Volume 12, pp. 131 -140.
  • JIANHUA, H., 2018. A Simple Accurate Formula for Calculating Saturation Vapor Pressure of Water and Ice. JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, Volume 57, pp. 1265-1272.
  • Jianquan, D. et al., 2020. Heatwave-induced human health risk assessment in megacities based on heat stress-social vulnerability-human exposure framework. Landscape and Urban Planning, 203(103907).
  • Jiménez-Muñoz, J. C. et al., 2014. Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data. IEEE Geoscience and Remote Sensing Letters, 11(10), pp. 1840-1843.
  • Long, L. & Yong, Z., 2019. Satellite-Based Spatiotemporal Trends of Canopy Urban Heat Islands and Associated Drivers in China’s 32 Major Cities. Remote Sensing, 11(102).
  • Mahmoud, S., 2017. A survey of modern classification techniques in remote sensing for improved image classification. Journal of Geomatics, 11(1).
  • Mukul Tewari, J. Y. H. K. F. S. C. W. a. L. T., 2019. Interaction of urban heat islands and heat waves under current and future climate conditions and their mitigation using green and cool roofs in New York City and Phoenix, Arizona. Environmental Reearch Letters.
  • NiMet, 2022. Nigerian Meteorological Agency. [Online] Available at: https://nimet.gov.ng [Accessed 5 July 2022].
  • Nnah, B. C. et al., 2021. Geospatial Assessment of Urban Heat Island in Port Harcourt L.G.A, Rivers State, Nigeria. International Journal of Sciences: Basic and Applied Research (IJSBAR), pp. 33-55.
  • Ogunode, A. & Akombelwa, M., 2017. An algorithm to retrieve Land Surface Temperature using Landsat-8 Dataset. South African Journal of Geomatics, 6(2).
  • Oke, T. R., 1982. The energetic basis of the urban heat island. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 108(455), pp. 1-24.
  • Oke, T. R., Gerald, M., Andreas, C. & James, A. V., 2017. Urban Climate. Cambridge: Cambridge University Press.
  • OLEG, A. A. & ROBERT, E. E., 1996. Improved Magnus’s form approximation of saturation vapor pressure. JOURNAL OF APPLIED METEOROLOGY, Volume 35, pp. 601-609.
  • Oliveira, S., Andrade, H. & Vaz, T., 2011. The cooling effect of green spaces as a contribution to the mitigation of urban heat: A case study in Lisbon. Building and Environment, pp. 2186-2194.
  • Oloyede, A. O. et al., 2021. Correlation Analysis of Vegetation and Land Surface Temperature in Uyo, Nigeria Using Satellite Remote Sensing and Python-Based Geographic Information System. Science and Technology Publishing, 5(2632-1017).
  • Oloyede, A., Ozuomba , S. & Asuquo, P., 2022. Descriptive and Diagnostic Analysis of NASA and NiMet Big Weather Data. Lagos, Nigeria, IEEE, pp. 1-5.
  • Qihao, W., 2012. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sensing of Environment, Volume 117, pp. 34-49.
  • Qinqin, S., Jianjun, T. & Yonghang, X., 2014. An ERDAS image processing method for retrieving LST and describing urban heat evolution: a case study in the Pearl River Delta Region in South China. Environ Earth Sci, Volume 59, pp. 1047 – 1055.
  • Qin, Z., Karnieli, A. & Berliner, P., 2001. A Mono-Window Algorithm for Retrieving Land Surface Temperature from Landsat TM data and its Application to the Israel-Egypt Border Region. International Journal of Remote Sensing, 22(18), pp. 3719-3746.
  • Ranhao, S. & Liding, C., 2017. Effects of green space dynamics on urban heat islands: Mitigation and diversification. Ecosystem Services, 23(2212-0416), pp. 38-46.
  • Shaohua, Z. et al., 2009. Comparison of two split-window methods for retrieving land surface temperature from MODIS data. J. Earth Syst. Sci, 118(4), pp. 345-353.
  • Shaohua, Z. et al., 2009. Comparison og two Split-Window Mehtods for Retrieving Land Surface Temperature from MODIS Data. Journal of Earth Syst. Science, 118(4), pp. 345-353.
  • Sharon, H. L. et al., 2006. Neighborhood microclimates and vulnerability to heat stress. Social Science & Medicine, 63(11), pp. 2847-2863.
  • Shashua-Bar, L., Pearlmutter, D. & Erell, E., 2009. The cooling efficiency of urban landscape strategies in a hot dry climate. Landscape and Urban Planning, pp. 179-186.
  • Skokovic, D. et al., 2014. Calibration and Validation of Land Surface Temperature for Landsat 8 – TIRS Sensor. Land product Validation and Evolution, ESA/ESRIN Frascati (Italy), pp. 6-9.
  • Sobrino, J. A. et al., 2008. Land Surface Emissivity Retrieval from Different VNIR and TIR Sensors. IEEE Transactions on Geoscience and Remote Sensing, 46(2).
  • Sobrino, J. A., Li, Z.-L., Stoll, M. P. & Becker, F., 1996. Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data. International Journal of Remote Sensing, 17(11), pp. 2089-2114.
  • Tasya, B., Rokhmatuloh & Adi, W., 2018. Comparison Spatial Pattern of Land Surface Temperature with Mono Window Algorithm and Split Window Algorithm: A Case Study in South Tangerang, Indonesia. s.l., s.n.
  • Ugur, A. & Gordana, J., 2016. Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data. Journal of Sensors.
  • Weng, Q., Fu, P. & Gao, F., 2014. Generating daily land surface temperature at Landsat resolution by fusing Landsat and modis data. Remote sensing of environment, Volume 145, pp. 55-67.
  • Xiaoyun, C. et al., 2014. Influence of Park Size and Its Surrounding Urban Landscape Patterns on the Park Cooling Effect. J. Urban Plann. Develop, 141(3).
  • Xin, C., Akio, O., Jin, C. & Hidefumi, I., 2010. Quantifying the cool island intensity of urban parks using ASTER and IKONOS data. Landscape and Urban Planning, Volume 96, pp. 224-231.
  • Zaitunah, A., Samsuri, A., Ahmad, G. & Safitri, R. A., 2018. Normalized difference vegetation index (ndvi) analysis for land cover types using landsat 8 oli in besitang watershed, Indonesia. s.l., s.n.
  • Zhao-Liang, L., Becker, F., Stoll, M. P. & Zhengming, W., 1999. Evaluation of Six Methods for Extracting Relative Emissivity Spectra from Thermal Infrared Images. Remote sensing of Environment, 69(3), pp. 197-214.