FROM THE CONCEPT OF SCHEMA TO THE IDEA OF “INSTRUMENTAL” SOCIAL SCHEMA

Author: Stavroula Patsiomitou

ABSTRACT

This paper aims to investigate and discuss the concept of schema within various theoretical frameworks, highlighting its essential importance for comprehending mathematical contexts. The article discusses Bartlett, recognized as the pioneer in introducing the concepts of “schema” and “schemata” in his research on memory in the field of cognitive psychology. Additionally, it emphasizes Skemp’s important contributions to the comprehension of schema. Furthermore, the psychological dimension of schema is clarified by Piaget’s theory and plays a crucial role in Vergnaud’s theory of conceptual fields. During the process of instrumental genesis, individuals, such as students in a classroom setting, actively develop what Rabardel describes as “utilization scheme” or “usage scheme” related to a tool. Rabardel posits that the application of tools encompasses both personal and social aspects. Consequently, social schemes emerge through interpersonal interactions and are shaped by the utilization of tools and artifacts within a given context. From this perspective, schemas contain social components. The incorporation of blended teaching methods, along with digital technologies and artificial intelligence, has significantly transformed the practices utilized in academic and educational organizations and institutions. Consequently, learners and teachers develop “instrumental” schemata, which suggests that these schemata are not static but rather dynamic, evolving continuously within a digital/instrumental/AI context. This transformation has also influenced the structure of various activities included in student textbooks.

Keywords: schema, utilization schemes, “dynamic” schema, instrumental social schema

REFERENCES

  • Allen R., Wallace M. & Cederberg J. (1995). Preparing Teachers to Use Geometric Software. Proceedings of the Seventh International Congress on Mathematics Education.
  • Anastasiades, P. (2023). Artificial Intelligence in Education: Pilot study to explore teachers’ views in Greece. Proceedings of the World Research Society International Conference, October 21 – 22, 2023 Zarqa, Jordan.
  • Asiala, M., Brown, A., DeVries, D., Dubinsky, E., Mathews, D., & Thomas, K. (1996). A framework for research and curriculum development in undergraduate mathematics education. Research in Collegiate Mathematics Education II, CBMS Issues in Mathematics Education, 6, 1-32.
  • Bartlett, F.C. (1932). Remembering: A study in Experimental and Social Psychology. London: Cambridge University Press.
  • Beguin, P. (2003). Design as a mutual learning process between users and designers. Interacting with Computers, 15, 709_730.
  • Beguin, P. (2006) In search of a unit of analysis for designing instruments. Published online 2006-03-15 ISSN 1749-3463 print/ ISSN 1749-3471 DOI: 10.1080/17493460600610830
  • Béguin, P. (2007). In search of a unit of analysis for designing instruments. Artifact, 1(1), 12-16.
  • Beguin, P. & Rabardel, P. (2000). “Designing for Instrument Mediated Activity”. Scandinavian Journal of Information Systems 12(1-2), 173–90. Special Issue: Information Technology in Human Activity.
  • Beth, Ε. W., & Piaget, J. (1966). Mathematical epistemology and psychology. Dordrecht, Netherlands: Reidel.
  • Cerulli, M. (2004): Introducing pupils to algebra as a theory: L’Algebrista as an instrument of semiotic mediation. PhD Thesis, Dipartimento di Matematica, Università degli Studi di Pisa.
  • Cerulli, M., Pedemonte, B., Robotti E. (2005): An integrated perspective to approach technology in mathematics education. Proceedings of the Fourth Congress of the European Society for Research in Mathematics Education (CERME 4), Sant Feliu de Guíxols, Spain, 17-21. 1389-1399
  • Cerulli, M., Mariotti, M. A. (2003): Building theories: working in a microworld and writing the mathematical notebook. In “Proceedings of the 2003 Joint Meeting of PME and PMENA”. Vol.II, pp. 181-188. Edited by Neil A. Pateman, Barbara J. Dougherty, Joseph Zilliox. CRDG, College of Education, University of Hawai’i, Honolulu, HI, USA.
  • Cooley, L., Trigueros, M., Baker, B. (2007). Schema Thematization: A framework and an example. Journal for Research in mathematics Education. Vol. 38, 4, pp.370-392.
  • Corcoran, John and Idris Samawi Hamid, “Schema”, The Stanford Encyclopedia of Philosophy (Fall 2022 Edition), Edward N. Zalta & Uri Nodelman (eds.), https://plato.stanford.edu/entries/schema/
  • Cotrill, J., Dubinsky, E., Nichols, D., Schwingendorf, K., Thomas, K., Vidakovic, D. (1996), Understanding the limit concept: beginning with a coordinated process schema, Journal of Mathematical Behavior, 15, 167-192. Dordrecht: Kluwer, 153-166.
  • Dubinsky, E. (1991a). Reflective Abstraction in Advanced Mathematical Thinking. In D. O. Tall (Ed.), Advanced Mathematical Thinking (pp. 95-123). Dordrecht: Kluwer Academic Publishers. http://www.math.wisc.edu/~wilson/Courses/Math903/ReflectiveAbstraction.pdf
  • Dubinsky, E. (1991b). Constructive aspects of reflective abstraction in advanced mathematics. In L. P. Steffe (Ed.), Epistemological foundations of mathematical experiences (pp. 160–202). New York: Springer.
  • Engestrom, Y. (1987). Learning by Expanding: An Activity Theoretical Approach to Developmental Research. Helsinki, Finland: Orienta-Konsultit. http://lchc.ucsd.edu/mca/Paper/Engestrom/Learning-by-Expanding.pdf
  • Engeström, Y. (2001). Expansive learning at work: Toward an activity theoretical reconceptualization. Journal of Education, 14(1), 133-156.
  • Engeström, Y. (2010). Activity theory and learning at work. In M. Malloch, L. Cairns, K. Evans, & B. N. O’Connor (Eds.), The SAGE handbook of workplace learning (pp. 86-104). London: Sage.
  • Guin, D., & Trouche, L. (2002) Mastering by the teacher of the instrumental genesis in CAS environments: necessity of instrumental orchestrations. Zentralblatt für Didaktik der Mathematik. Vol 34 (5) pp.204-211
  • Hitt, F. (2002) Construction of Mathematical Concepts and Cognitive Frames. Representations and Mathematics Visualization. North American Chapter of the International Group for the Psychology of Mathematics Education. pp.241-262. https://repensarlasmatematicas.wordpress.com/wp-content/uploads/2013/01/hittf2006-limite.pdf
  • Hoyles, C. (2003). From Instrumenting and Orchestrating Convergence to Designing and Recognising Diversity: A response to Luc Trouche”. Plenary presentation at the Third Computer Algebra in Mathematics Education Symposium, Reims, France, June 2003
  • Hoyles, C., & Noss, R. (1996). Windows on mathematical meanings. Dordrecht/Boston/ London: Kluwer Academic Publishers.
  • Jonassen, D.H., Tessmer, M. and Hannum, W.H. with Rohrer-Murphy, L., (1999). In: D.H. Jonassen, M. Tessmer and W.H. Hannum, Task Analysis Methods for Instructional Design (Mahwah, NJ: Lawrence Erlbaum).
  • Kaput, J. J. (1992). Technology and Mathematics Education. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 515-556). New York: Simon and Shuster.
  • Kuutti, K., (1996). Activity Theory as potential framework for Human Computer Interaction research, in Nardi B.A.(ed), Context and Consciouness, MIT Press: Cambridge, 17-44.
  • Kuutti, K. (1991). Activity theory and its applications to information systems research and development. In H.-E.Nissen, ed., Information Systems Research (pp. 529–549). Amsterdam: Elsevier Science Publishers.
  • Lakoff, G. & Nùñez, R. (2000): Where Mathematics Comes From: How the Embodied Mind Brings Mathematics into Being. New York: Basic Books.
  • Lejeune, A., Pernin, J-P. (2004). A taxonomy for scenario-based engineering, Cognition and Exploratory Learning in Digital Age Proceedings, p.249-256, Lisboa, Portugal.
  • Leont’ev, A. (1974). The problem of activity in psychology. Soviet Psychology. 13(2):4–33.
  • Leont’ev, A. N. (1978). Activity, Consciousness and Personality. Englewood Cliffs, NJ: Prentice–Hall.
  • Leont’ev, A.N. (1981): Problems of the development of the mind (originally published in Russian in 1959). Moscow, Russia, Progress
  • Lehtinen, E. & Repo, S. (1996) Activity, Social Interaction and Reflective Abstraction: Learning Advanced Mathematical Concepts in a Computer Environment. In S. Vosniadou, E.De Corte, R. Glaser, & H. Mandl (Eds.). International perspectives on the design of technology supported learning environments (pp. 105-128). Mahwah, NJ: Lawrence Erlbaum Associates.  https://www.researchgate.net/publication/270898035.
  • Lieberman, O.A. (2004). Learning and Memory: An Integrative Approach. Canada: Wadsworth/Thomson. Publisher: Vicki Knight.
  • Littlefield Cook, Joan and Cook, Greg (2005) Child development: principles and perspectives, Boston, Mass: Pearson
  • Luria, A. R. (1979). The Making of Mind: A Personal Account of Soviet Psychology. Cambridge, MA: Harvard University Press.
  • Mariotti, M.A. (2002). Influence of technologies advances on students’ math learning. In Handbook of International Research in Mathematics Education. Lawrence Erbaum Associates (pp. 695-724). Mahwah, New Jersey : Lawrence Erlbaum Associates, Inc. Publisher.
  • Nardi, B. A. (1996). “Studying context: a comparison of Activity Theory, Situade Action Models, and Distributed Cognition”. In Nardi, B. A. (ed.), Context and Consciousness, pp. 69-102.Cambridge MA: The MIT press.
  • Nelissen, J. M. C. and Tomic, W. (1996) Representation and Cognition. Heerlen: Open University. https://files.eric.ed.gov/fulltext/ED402012.pdf
  • Noss, R., & Hoyles, C. (1996). Windows on Mathematical Meanings: Learning Cultures and Computers. Dordrecht: Kluwer.
  • Patsiomitou, S., (2008). The development of students geometrical thinking through transformational processes and interaction techniques in a dynamic geometry environment. Issues in Informing Science and Information Technology journal. Vol.5 pp.353-393. http://iisit.org/IssuesVol5.htm
  • Patsiomitou, S. (2009) Learning Mathematics with The Geometer’s Sketchpad v4. Klidarithmos Publications. Volume A . ISBN: 978-960-461-308-3
  • Patsiomitou, S. (2010). Building LVAR (Linking Visual Active Representations) modes in a DGS environment. Electronic Journal of Mathematics and Technology (eJMT), ISSN1933-2823, pp. 1-25, Issue 1, Vol. 4, February, 2010. https://ejmt.mathandtech.org/Contents/eJMT_v4n1p1.pdf
  • Patsiomitou, S. (2011). Theoretical dragging: A non-linguistic warrant leading to dynamic propositions. In Ubuz, B (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, ISBN 987 -975-429-297-8 . Vol. 3, pp. 361-368. Ankara, Turkey: PME.
  • Stavroula Patsiomitou (2012a). The development of students’ geometrical thinking through transformational processes and interaction techniques in a dynamic geometry environment. PhD thesis. University of Ioannina (December 2012).   http://www.didaktorika.gr/eadd/handle/10442/35816
  • Patsiomitou, S. (2012b) A Linking Visual Active Representation DHLP for student’s cognitive development. Global Journal of Computer Science and Technology, Vol. 12 Issue 6, March 2012. pp. 53-81. ISSN 9754350. Available at: http://computerresearch.org/index.php/computer/article/view/479/479
  • Patsiomitou, S. (2014). Student’s Learning Progression Through Instrumental Decoding of Mathematical Ideas. Global Journal of Computer Science and Technology, Vol. 14 Issue 1,pp. 1-42. Online ISSN: 0975-4172 & Print ISSN: 0975-4350. http://computerresearch.org/index.php/computer/article/view/41/41
  • Patsiomitou, S. (2019). A Trajectory for the Teaching and Learning of the Didactics of Mathematics [using ICT]: Linking Visual Active Representations. Monograph. Published by Global Journal Incorporated. United States. (September 5, 2019) . ISBN: 978-1-7340132-0-7. http://doi.org/10.34257/SPatTrajICT
  • Patsiomitou, S. (2020a). Didactics of Mathematics I: Linking Visual Active Representations. Monograph. Anatolikos. Athens. ISBΝ: 978-618-5136-46-8. https://www.academia.edu/42019703/
  • Patsiomitou, S. (2020b). Didactics and instruction of mathematics: from theory to action using microworlds. Angelakis publications. Athens. ISBN: 978-960-616-155-1.https://www.academia.edu/43795275/
  • Patsiomitou, S. (2021a). Dynamic Euclidean Geometry: pseudo-Toulmin modeling transformations and instrumental learning trajectories. Journal of Education and Practice. ISSN 2222-1735 (Paper) ISSN 2222-288X (Online). 12 (9). pp. 80-96. DOI: 10.7176/JEP/12-9-09. Publication date: March 31st 2021.
  • Patsiomitou, S. (2021b). A Research Synthesis Using Instrumental Learning Trajectories:Knowing How and Knowing Why. Information and Knowledge Management. ISSN 2224-5758 (Paper) ISSN 2224-896X (Online). 11(3). DOI: 10.7176/IKM/11-3-02. Publication date: April 30th 2021
  • Patsiomitou, S. (2023). A brief review on my studies: managing the complexity on using Linking Visual Active Representations (LVAR) International Journal of Scientific and Management Research.  Volume 6 Issue 05 (May) 2023, pp.  1-33.  http://doi.org/10.37502/IJSMR.2023.6501
  • Patsiomitou, S. (2024). Investigating Artificial Intelligence Technologies in Generating LVAR. International Journal of Research in Education Humanities and Commerce. Volume 05, Issue 05, pp 194-217. “September – October 2024”. https://doi.org/10.37602/IJREHC.2024.5515
  • Patsiomitou, S., & Koleza, E. (2008). From schemes to social schemes through an instrumental orchestration process. “Euclid C”: Scientific journal of Hellenic Mathematical Society (68), 105-130 (in Greek).
  • Piaget, J. (1936/1952). The Origins of Intelligence in Children. M. Cook, Trans.). W W Norton & Co. New York, NY https://doi.org/10.1037/11494-000. https://www.bxscience.edu/ourpages/auto/2014/11/16//50007779/ Piaget When Thinking Begins10272012_0000.pdf
  • Piaget, J. (1970). Genetic Epistemology, W. W. Norton, New York.
  • Piaget, J. (1971). Psychology and Epistemology (A. Rosen, Trans.) New York:Grossman (original work published 1970).
  • Piaget, J. (1972). The Principles of Genetic Epistemology. Routledge & Kegan Paul: London
  • Piaget, J. (1978). Success and understanding. London: Routledge & Kegan Paul. (originally published 1974)
  • Piaget, J. and Beth, E.W. (1961). Epistemologie Mathematique et Psychologie. Essai sur les Relations Entre la Logique Formelle et la Pensee Reelles, Etudes D’epistemologie Genetique N_14 (Paris: PUF).
  • Piaget, J., & García, R. (1989). Psychogenesis and the History of Science (Translated by H. Feider). New York: Columbia University Press. (Original work published in 1983).
  • Piaget, J. (1985). The equilibration of cognitive structures. Cambridge, ΜΑ: Harvard University Press.
  • Piaget, J., & Garcia, R. (1983/1989). Psychogenesis and the history of science. New York: Columbia University Press
  • Piaget, J., & Inhelder, B. (1969). The Psychology of the Child (H. Weaver Trans.). New York, NY: Basic Books.
  • Rabardel. (1995). Les Hommes et les Technologies. Approche cognitive desinstruments contemporains. Paris: A. Colin.
  • Rabardel P. (2000) Elιments pour une approche instrumentale en didactique des mathematiques, in M. Bailleul (Ed.), Les instruments dans la pratique et l’enseignementdes mathιmatiques, Actes de l’ιcole d’ιtι de didactique des mathιmatiques (pp. 202-213).Caen: IUFM.
  • Pierre Rabardel. People and technology: a cognitive approach to contemporary instruments. Université Paris 8, pp.188, 2002. hal-01020705
  • Rabardel P.& Samurcay R.  (2001). From Artifact to Instrumented-Mediated Learning, New challenges to research on learning, International symposium organized by the Center for Activity Theory and Developmental Work Research, University of Helsinki, March 21-23
  • Rabardel, P., & Beguin, P. (2005). Instrument mediated activity: from subject development to anthropocentric design. Theoretical Issues in Ergonomics Sciences, 6, 429_461
  • Rivera, F. (2007). Accounting for student’ schemes in the development of a graphical process for solving polynomial inequalities instrumented activity. Educational Studies in Mathematics. 65: 281–307 DOI: 10.1007/s10649-006-9052-2
  • Rumelhart, D.E. (1980): Schemata: The Building Blocks of Cognition. In: R. T. Spiro, B. C. Bruce and W. F. Brewer (eds.), Theoretical Issues in Reading Comprehension. Hillsdale, NJ, Erlbaum
  • Skemp, R. (1971). The psychology of learning mathematics, Middlesex, UK: Penguin.
  • Skemp, R. (1978). Relational Understanding and Instrumental Understanding. The Arithmetic Teacher, Vol. 26, No. 3 (November 1978), pp. 9-15. National Council of Teachers of Mathematics. http://www.jstor.org/stable/41187667.
  • Skemp, R. “The Idea of a Schema.” The Psychology of Learning Mathematics: Expanded, 1st ed., Routledge, New York, NY, 1987, pp. 22–34.
  • Steffe, L. P. (1983). Children’s algorithms as schemes. Educational Studies in Mathematics, 14, 109–125
  • Stipcich, S., Moreira, A., Sahelices, C.C. (2007). The Construction of Notions on Complex Subjects, in Students of Secondary Education: An Analysis by Means of the Theory of the Conceptual Fields Vol. 9, No. 1, Printed from:/URL: http://redie.uabc.mx/vol19no1/print-contents-tipcich.html
  • Tall, D., Thomas, M., Davis, G., Gray, E., & Simpson, A. (1999). What is the object of the encapsulation of a process? Journal of Mathematical Behavior, 18(2), 223-241
  • Tsou, J.Y. (2006). Genetic epistemology and Piaget’s philosophy of science: Piaget vs. Kuhn on scientific progress. Vol. 16(2): 203–224 https://philpapers.org/archive/TSOGEA.pdf
  • Trouche, L. (2003). Managing the complexity of human/machine interaction in a computer-based learning environment: Guiding students’ process command through instrumental orchestrations. Retrieved 9 September, 2005 from     http://www.lonklab.ac.uk/came/events/reims
  • Trouche, L. (2004) Managing the complexity of the human/machine interaction in computerized learning environments: guiding students’ command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning. 9, pp. 281-307, Kluwer academic publishers
  • Trouche, L. (2005a). An instrumental approach to mathematics learning in symbolic calculators environments. In D. Guin, K. Ruthven, & L. Trouche (Eds.), The didactical challenge of symbolic calculators: Turning a computational device into a mathematical instrument (pp.      137-162). New York: Springer.
  • Trouche, L. (2005b). Instrumental genesis, individual and social aspects. In D. Guin, K. Ruthven, & L. Trouche (Eds.), The didactical challenge of symbolic calculators: Turning acomputational device into a mathematical instrument (pp. 197-230). New York: Springer.Piaget, J. & Inhelder, B. (1969). The psychology of the child. London: Routledge & Kegan Paul.
  • Trouche, L. (2006). An Instrumental, Didactical and Ecological Approach (IDEA) to the process involved in learning mathematics… and some consequences for reconsidering the teaching of Mathematics. Center for Naturfagenes Didaktik, Copenhague.
  • Vergnaud, G. (1988). Multiplicative structures. In J. Hiebert & M. Behr (Eds.), Number concepts and operations in the middle grades (pp. 141–161). Reston, VA: National Council of Teachers of Mathematics.
  • Vergnaud G.: (1990). Epistemology and psychology of mathematics education, in: Mathematics and Cognition: A reasearch synthesis by the International Group for Psychology of Mathematics Education (pp.14-30), ICMI Study Series. Cambridge University Press.
  • Vergnaud, G. (1996): The Theory of Cenceptual Fields. In: Steffe, L.P. / Nesher, P. (Hrsg.): Theories of mathematical learning. Mahwah, NJ: Lawrence Erlbaum. pp. 219-239.
  • Vergnaud, G. (1997): The Nature of Mathematical Concepts. In T. Nunes & P. Bryant (Eds.): Learning and Teaching Mathematics: An International Perspective. Hove, UK: Psychology Press. pp. 5-28.
  • Vergnaud, G. (1998). Comprehensive theory of representation for mathematics education. Journal of Mathematics Behavior, 17(2), 167-181.
  • Vergnaud, G. (2009). The theory of conceptual fields. In T. Nunes (Ed.), Giving meaning to mathematical signs: Psychological, pedagogical and cultural processes. Human Development [Special Issue], 52, 83–94.
  • Vérillon, P., & Rabardel, P. (1995). Cognition and artefacts: A contribution to the study of though [sic] in relation to instrumented activity. European Journal of Psychology of Education, 10, 77–103.
  • Vosniadou, S. (2008). Conceptual change research: an introduction. In S. Vosniadou (Ed.), International Handbook of Research on Conceptual Change. New York: Routledge
  • Vosniadou, S. (2006). Designing Learning Environments Supported by Modern Technologies. Athens: Gutenberg (in Greek)
  • Vygotsky, L. (1934). Pensée et langage, Flammarion (1978).
  • Vygotsky, L. (1978). Mind in Society: The development of higher psychological processes.Cambridge, MA: Harvard University Press
  • Wartofsky, M. W. (1979). Models. Representation and the Scientific Understanding (Vol. 129). Dodrecht – Boston – London: Reidel Publishing Company.
  • Wertsch, J. V. (1991). Voices of the mind: A sociocultural approach to mediated action. Cambridge: Harvard University Press.
  • Zazkis, R. & Liljedahl, P. (2002). Arithmetic sequence as a bridge among conceptual fields. Canadian Journal of Science, Mathematics and Technology Education, 2(1). 91-118.