A PROPOSAL FOR A FRACTAL -BASED ‘DYNAMIC’ PROGRAM: THE PYTHAGOREAN TREE STRUCTURE GENERATED THROUGH ‘INSTRUMENTAL’ SCHEMATA

Author: Stavroula Patsiomitou

ABSTRACT

This document primarily investigates the structure of the Pythagorean Tree, integrating my previous research and writings with earlier insights and contemporary ideas related to its fractal nature, which is produced through instrumental schemata. To illustrate the concept of instrumental schemata, I will present the example of Generator tools that can be created within dynamic geometry software environments. I will briefly discuss the van Hiele theory, which is crucial for classifying students based on their understanding and interpretation of geometric figures. In one section, I will investigate a fresh perspective on the Pythagorean tree, concentrating on the figures that arise when one carefully observes the empty spaces formed between the branches of the tree. Finally, I will delineate the essential elements of an innovative Fractal-based Dynamic Program (FDP) that I designed, developed and implemented. I will propose its effective implementation, as it has the potential to serve as an informal curriculum centered on the principles of transformation geometry and fractals for educational projects. It is anticipated that educators will regard the incorporation of fractal geometry into the standard curriculum as a beneficial didactic and pedagogic framework for fostering students’ curiosity and demonstrating the dynamic character of the field.

Keywords: Fractal, Pythagorean Tree, Dynamic Geometry Software, van Hiele Geometric Thinking Levels, Transformation Geometry, Instrumental social schema

REFERENCES

  • Balacheff, N. Kaput, J. (1996) Computer-based learning environment in mathematics. Alan Bischop. International Handbook of Mathematics Education, Kluwer Academic publisher, pp. 469-501, 1997. <hal-01775249>
  • Battista, M. (2011). Conceptualizations and issues related to learning progressions, learning trajectories, and levels of sophistication. The Mathematics Enthusiast, 8(3), 507-570.
  • Battista, M. T. (2007). The development of geometric and spatial thinking. In Lester, F. (Ed.), Second Handbook of Research on Mathematics Teaching and Learning (pp. 843-908). NCTM. Reston, VA: National Council of Teachers of Mathematics.
  • F. J. M. Barning (1963). On Pythagorean and quasi-Pythagorean triangles and a generation process with the help of unimodular matrices. (Dutch) Math. Centrum Amsterdam Afd. Zuivere Wisk., ZW-011.
  • B. Berggren (1934). ”Pytagoreiska trianglar” (in Swedish), Elementa: Tidskrift för elementär matematik, fysik och kemi 17.
  • Burger, W. F., & Shaughnessy, J. M. (1986). Characterizing the van Hiele levels of development in geometry. Journal for Research in Mathematics Education, 17, 31-48.
  • Ir. A.E. Bosman (1957) Het wondere onderzoekingsveld der vlakke meetkunde, N.V. Uitgeversmaatschappij Parcival, Breda.
  • Burkhardt, H. (1981). The real world and mathematics. Glasgow, UK: Blackie Cambridge, Mass.: Harvard University Press, 1986.
  • Claudia, A. (2009). Gestalt configurations in geometry learning. Proceedings of CERME 6 (pp. 706-715), January 28-February 1, Lyon France.
  • Choppin, J. M. (1994). Spiral through recursion. Mathematics Teacher, 87, 504-508.
  • De Corte, E., Verschaffel, L., & Greer, B. (2000). Connecting mathematics problem solving to the real world. In: Proceedings of the International Conference on Mathematics Education into the 21st Century: Mathematics for living (pp. 66-73). Amman, Jordan: The National Center for Human Resource Development.
  • Corcoran, John and Idris Samawi Hamid, “Schema”, The Stanford Encyclopedia of Philosophy (Fall 2022 Edition), Edward N. Zalta & Uri Nodelman (eds.), https://plato.stanford.edu/entries/schema/
  • Dosher, B. A. (2003). Working memory. In L. Nadel (Ed.), Encyclopedia of cognitive science (Vol. 4, pp. 569–577). London: Nature Publishing Group.
  • Duval, R. (1995a). Sémiosis et pensée humaine. Berne: Peter Lang
  • Duval, R. (1995b). Geometrical Pictures: kinds of representation and specific processings. In R. Sutherland and J. Mason (Eds), Exploiting Mental Imagery with Computers in Mathematics Education. Berlin: Springer. pp. 142-157
  • Duval, R. (1999). Representation, vision and visualization: Cognitive functions in mathematical thinking. Basic issues for learning. In F. Hitt & M. Santos (Eds.), Proceedings of the 21st Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, Volume 1 (pp. 3-26). Cuernavaca, Morelos, Mexico.
  • Gagné, R. M., Briggs, L. J., & Wager, W. W. (1992). Principles of instructional design (4th ed.). Forth Worth, TX: Harcourt Brace Jovanovich College Publishers.  https://www.hcs64.com/files/Principles%20of%20instructional%20design.pdf
  • Kenneth J. Falconer. Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons, 1990. ISBN 0-471-92287-0.
  • Fuys, D., Geddes, D., & Tischler, R. (1988). The Van Hiele model of thinking in geometry among adolescents. Journal for Research in Mathematics Education. Monograph, Vol. 3, pp. 1-196. Published by: National Council of Teachers of Mathematics Stable URL: http://www.jstor.org/stable/749957.
  • Fuys, D., Geddes, D., & Tischler, R. (Eds). (1984). English translation of selected writings of Dina van Hiele-Geldof and Pierre M. van Hiele. Brooklyn: Brooklyn College. (ERIC Document Reproduction Service No. ED 287 697).
  • Gawlick, T. (2005). Connecting arguments to actions –Dynamic geometry as means for the attainment of higher van Hiele levels. Zentralblatt für Didaktik der Mathematik, 37(5), 361-370.
  • Ghosh, Jonaki (2016) Fractal constructions leading to algebraic thinking. At Right Angles, 5 (3). pp. 59-66. ISSN 2582-1873.
  • Hoyles, C. & Noss, R. (1993). Deconstructing microworlds. In D. Ferguson (Ed.). Advanced technologies in the teaching of mathematics and science (pp. 415-438). Berlin: Springer-Verlag.
  • Jackiw, N. (1991).The Geometer’s Sketchpad [Computer Software].Berkeley, CA: Key Curriculum Press.
  • Kadunz, G. (2002). Macros and modules in geometry. ZDM, 34(3), 73-77.
  • Kaput, J. (1992). Technology and Mathematics Education. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 515-556). New York: Macmillan.
  • Kinach, Barbara M. (2014). “Generalizing: the core of algebraic thinking”. Mathematics Teacher, 107(6), 432-439. https://www.academia.edu/15631454/
  • Laborde, C. (1993) The computer as part of the learning environment: the case of geometry,Keithel, C. & Ruthven, K., Learning from computers: mathematics education and technology, NATO ASI Series, Springer Verlag, 48-67.
  • Laborde, C. (1994). Enseigner la géométrie: Permanences et révolutions. In C. Gaulin, B. Hodgson, D. Wheeler, & J. Egsgard (Eds.), Procedings of the 7th International Congress on Mathematical Education (pp. 47-75). Les Presses de L’Université Laval, Sainte-Foy, PQ, Canada
  • Löfstedt, T.  (2008) Fractal Geometry, Graph and Tree Constructions. Master’s Thesis in Mathematics. Sweden: Umea University.
  • Benoit B. Mandelbrot (1975). Les objets fractals, forme, hasard et dimension. Paris:Flammarion.
  • Mariotti, M. A. (1997). Justifying and proving in geometry: the mediation of a microworld. In M. Hejny & J. Novotna (Eds.) Proceedings of the European Conference on Mathematical Education (pp. 21-26). Prague: Prometheus Publishing House.
  • Mariotti, M. A. (2000). Introduction to Proof: The Mediation of a Dynamic Software Environment. Educational Studies in Mathematics, 44(1/2), 25-53.
  • Parzysz, B. (1988). Knowing versus seeing: problems of the plane representation of space geometry figures. Educational Studies in Mathematics, 19, 79–92.
  • Patsiomitou, S.  (2005a). Fractals as a context of comprehension of the meanings of the sequence and the limit in a Dynamic Computer Software environment. Master Thesis. National and Kapodistrian University of Athens. Department of Mathematics. Interuniversity Postgraduate Program.
  • Patsiomitou, S.  (2005b): Fractals as a context of comprehension of the meanings of the sequence and the limit in a Dynamic Software environment. Proceedings of the 22nd Panhellenic Conference of the Hellenic Mathematical Society (p.311-323), Lamia, 18-20 November 2005. ISSN: 1105-7955.
  • Patsiomitou, S. (2006a): Transformations on mathematical objects through animation and trace of their dynamic parameters. Proceedings of the 5th Pan-Hellenic Conference with International Participation. Informatics and Education-ETPE, pp. 1070-1073, Thessaloniki, 5-8 October 2006. ISBN:960-88359-3-3.http://www.etpe.gr/custom/pdf/etpe1213.pdf (in Greek).
  • Patsiomitou, S. (2006b): Conclusions from the Experimental Teaching with NCTM interactive math applets (illuminations.nctm.org): Student’s perception of meanings. Proceedings of the 5th Pan-Hellenic Conference with International Participation. Informatics and Education-ETPE,  pp. 1053-1057, Thessaloniki, 5-8 October 2006. ISBN: 960-88359-3-3 (in Greek).
  • Patsiomitou, S. (2006c): The Dynamic Geometry Environment as a means for the instructional design of activities. The results of a research process in a high school. 1st ICT Conference. University of Nicosia, Cyprus (in Greek).
  • Patsiomitou, S. (2006d): DGS ‘custom tools/scripts’ as building blocks for the formulation of theorems-in-action, leading to the proving process. Proceedings of the 5th Pan-Hellenic Conference with International Participation “ICT in Education” (HCICTE 2006), pp. 271-278, Thessaloniki, 5-8 October. ISBN 960-88359-3-3.http://www.etpe.gr/custom/pdf/etpe1102.pdf (in Greek).
  • Patsiomitou, S.  (2006e): Aesthetics and technology, as means for students’ motivation to the proving process in a dynamic geometry environment. Proceedings of the 23rd Panhellenic Conference of the Hellenic Mathematical Society, pp.515-526, Patras, 24-26 November 2006. ISSN :1105-7985  (in Greek).
  • Patsiomitou, S. (2006f): An approximation process generating number π (pi) through inscribed/circumscribed parametric polygons in a circle or through Riemann integrals’ approximation process. Experimentation and research in a Dynamic Geometry Software Environment. Proceedings of the 23rd Panhellenic Conference of the Hellenic Mathematical Society, pp.502-514, Patras, 24-26 November 2006. ISSN: 1105-7985  (in Greek)
  • Patsiomitou, S. (2006g): Dynamic geometry software as a means of investigating – verifying and discovering new relationships of mathematical objects. “EUCLID C”: Scientific journal of Hellenic Mathematical Society (65), pp. 55-78 (in Greek).
  • Patsiomitou, S. (2007a) Fractals as a context of comprehension of the meanings of the sequence and the limit in a Dynamic Computer Software environment. Electronic Proceedings of the 8th International Conference on Technology in Mathematics Teaching (ICTMT8) in Hradec Králové (E. Milková, Pavel Prazák, eds.), University of Hradec Králové, 2007. ]. ISBN 978-80-7041-285-5 (cd-rom).
  • Patsiomitou, S. (2007b) Sierpinski triangle, Baravelle spiral, Pythagorean tree: The Geometer’s Sketchpad v4 as a means for the construction of meanings. Proceedings of the 4th Pan-Hellenic ICT Conference titled: “Exploiting Information and Communication Technologies in Educational Practices.”, Greek Ministry of Education, pp. 28-37, Syros, 4-6 May 2007(in Greek).
  • Patsiomitou, S. (2007c) Circle’s Area and number pi: An interdisciplinary teaching approach using the Geometer’s Sketchpad v4 and the History of Mathematics. Proceedings of the 4th Pan-Hellenic ICT Conference titled: “Exploiting Information and Communication Technologies in Educational Practices.”, Greek Ministry of Education, pp. 59-68, Syros, 4-6 May 2007(in Greek).
  • Patsiomitou, S.  (2007d) The Conic Sections: A teaching approach using internet -Quick movies, Geometer’s Sketchpad v4, Cabri 3D and Function Probe. Proceedings of the 4th Pan-Hellenic ICT Conference titled: “Exploiting Information and Communication Technologies in Educational Practices.”, Greek Ministry of Education, pp. 38-47, Syros, 4-6 May 2007(in Greek).
  • Patsiomitou, S. (2007e): Modeling Euclid’s Elements in The Geometer’s Sketchpad v4 dynamic geometry software. “Astrolavos”: Scientific journal of New Technologies of the Hellenic Mathematical Society,  (8), pp. 61-89 (in Greek).
  • Patsiomitou, S., (2008a). The development of students’ geometrical thinking through transformational processes and interaction techniques in a dynamic geometry environment. Issues in Informing Science and Information Technology journal. Vol. 5 pp.353-393.  ISSN: 1547-5840 , https://doi.org/10.28945/1015
  • Patsiomitou, S. (2008b) Linking Visual Active Representations and the van Hiele model of geometrical thinking. In Yang, W-C, Majewski, M., Alwis T. and Klairiree, K. (Eds.)  Proceedings of the 13th Asian Conference in Technology in Mathematics. pp 163-178. ISBN: 978-0-9821164-1-8. Bangkok, Thailand: Suan Shunanda Rajabhat University. http://atcm.mathandtech.org/EP2008/papers_full/2412008_14999.pdf
  • Patsiomitou, S. (2008c). Do geometrical constructions affect students algebraic expressions? In Yang, W., Majewski, M., Alwis T. and Klairiree, K. (Eds.) Proceedings of the 13th Asian Conference in Technology in Mathematics. pp 193-202. ISBN: 978-0-9821164-1-8.  http://atcm.mathandtech.org/EP2008/pages/regular.html
  • Patsiomitou, S. (2008d) Custom tools and the iteration process as the referent point for the construction of meanings in a DGS environment. In Yang, W-C, Majewski, M., Alwis T. and Klairiree, K. (Eds.) Proceedings of the 13th Asian Conference in Technology in Mathematics. pp. 179-192. ISBN: 978-0-9821164-1-8.    http://atcm.mathandtech.org/EP2008/pages/regular.html
  • Patsiomitou, S.  (2008e) The Geometer’s Sketchpad v4 Dynamic Geometry software as a means for interpreting and designing Euclid’s Elements. Proceedings of the 1st Pan-Hellenic ICT Educational Conference, “Digital Material to support Primary and Secondary-level teachers’ pedagogical work“, pp.325-333, Naoussa, 9-11 May 2008. (in Greek)
  • Patsiomitou, S.  (2008f). The construction of the number φ and the Fibonacci sequence in “The Geometer’s Sketchpad v4” Dynamic Geometry software. Proceedings of the 1st Pan-Hellenic ICT Educational Conference, “Digital Material to support Primary and Secondary-level teachers’ pedagogical work“, p.307-315 Naoussa, 9-11 May 2008. (in Greek)
  • Patsiomitou, S.  (2008g). The construction of a Baravelle spiral as a means for students’ intuitive understanding of ascending and descending sequences. Proceedings of the 1st Panhellenic ICT Educational Conference, “Digital Material to support Primary and Secondary-level teachers’ pedagogical work“, pp.316-324, Naoussa, 9-11 May 2008. (in Greek)
  • Patsiomitou, S. (2008h) Problem solving through Linking Visual Active Representations in a Dynamic Geometry Software, leading to rigorous proof. Proceedings of the 6th Pan-Hellenic Conference with International Participation “Information and Communication Technologies in Education” (HCICTE 2008), University of Cyprus, pp. 81-88, Cyprus 25-28 September 2008. Http://www.etpe.gr/custom/pdf/etpe1232.pdf (in Greek)
  • Patsiomitou, S. (2009a) The Impact of Structural Algebraic Units on Students’ Algebraic Thinking in a DGS Environment at the Electronic Journal of Mathematics and Technology (eJMT), 3(3), 243-260. ISSN: 1933-2823
  • Patsiomitou, S. (2009b) Learning Mathematics with The Geometer’s Sketchpad v4. Monograph. Klidarithmos Publications. Volume A . ISBN: 978-960-461-308-3) (in Greek).
  • Patsiomitou, S. (2009c) Learning Mathematics with The Geometer’s Sketchpad v4. Monograph. Klidarithmos Publications. Volume B. ISBN: 978-960-461-309-0) (in Greek).
  • Patsiomitou, S. (2009d). Cognitive and theoretical (gnostikotheoretices) links using the Geometer’s Sketchpad software’s interaction techniques. Proceedings of the 5th Pan-Hellenic ICT Conference, entitled “Exploiting Information and Communication Technologies in Didactic Practice“, Greek Ministry of Education,pp. 583-591. Syros 8, 9, 10 May 2009(in Greek).
  • Patsiomitou, S. (2009e) Demonstration of visual proofs through decomposition and rearrangement of equivalent figures, created in a dynamic geometry software. Proceedings of the 5th Pan-Hellenic ICT Conference, entitled “Exploiting Information and Communication Technologies in Didactic Practice“, Greek Ministry of Education, pp. 592-600. 8, 9, 10 May 2009 Syros. (in Greek).
  • Patsiomitou, S. (2009f) Tessellations, Pentominos, Structural Algebraic Units, Rep-Tiles, Tangram. A proposal for a qualitative upgrading of math curricula. Proceedings of the 5th Pan-Hellenic ICT Conference, entitled “Exploiting Information and Communication Technologies in Didactic Practice“, Greek Ministry of Education, pp. 601-609. Syros 8, 9, 10 May 2009 (in Greek).
  • Patsiomitou, S. (2009g) Students’ cognitive interactions through constructions created with the Geometer’s Sketchpad v4 DG environment. Proceedings of the 1st Educational Conference entitled “Integration and Use of ICT in the Educational Process”, pp. 129-134. Volos, 24-26 April. Http://www.etpe.gr/custom/pdf/etpe1440.pdf (in Greek)
  • Patsiomitou, S. (2009h) Tessellations constructed using Geometer’s Sketchpad v4 as an intuitive means for the development of students’ deductive reasoning. Proceedings of the 1st Educational Conference entitled “Integration and Use of ICT in the Educational Process”, pp. 154-160. Volos, 24-26 April(in Greek)
  • Patsiomitou, S. (2010) Building LVAR (Linking Visual Active Representations) modes in a DGS environment  at the Electronic Journal of Mathematics and Technology (eJMT), pp. 1-25, Issue 1, Vol. 4, February, 2010, ISSN:1933-2823.
  • Patsiomitou, S. (2011a) Theoretical dragging: A non-linguistic warrant leading to dynamic propositions. In Ubuz, B (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, Vol. 3, pp. 361-368. Ankara, Turkey: PME. ISBN: 978-975-429-297-8. Available at https://www.academia.edu/1764209
  • Patsiomitou, S. (2011b). Theoretical dragging: a non-linguistic warrant leading students to develop ‘dynamic’ propositions. 28th Panhellenic Conference of Hellenic Mathematical Society, pp.562-574, Department of Mathematics of the University of Athens. Available at https://www.academia.edu/3544047 (in Greek).
  • Stavroula Patsiomitou (2012a). The development of students’ geometrical thinking through transformational processes and interaction techniques in a dynamic geometry environment: Linking Visual Active Representations. PhD thesis. University of Ioannina (December 2012). https://www.didaktorika.gr/eadd/handle/10442/35816) (in Greek).
  • Patsiomitou, S. (2012b) A Linking Visual Active Representation DHLP for student’s cognitive development. Global Journal of Computer Science and Technology, Vol. 12 Issue 6, March 2012. pp. 53-81. ISSN 9754350. Available at: http://computerresearch.org/index.php/computer/article/view/479/479.
  • Patsiomitou, S.  (2012c) Didactic approaches to teaching Mathematics to students with different learning styles: Mathematics in the Real World. Self–publishing. ISBN 978-960-93-4456. (in Greek) https://www.academia.edu/2054056/(in Greek).
  • Patsiomitou, S. (2012d). Building and Transforming Linking Visual Active Representations – Implementation of LVARs for the teaching of mathematics in class. Proceedings of 8th Pan-Hellenic Conference with International Participation “ICT in Education” (HCICTE, 2012), University of Thessaly     http://www.etpe.gr/custom/pdf/etpe1895.pdf (in Greek).
  • Patsiomitou, S. (2013a) Students learning paths as ‘dynamic encephalographs’ of their cognitive development”. Ιnternational journal of computers & technology [Online], 4(3) pp. 802-806 (18 April 2013) ISSN 2277-3061, https://doi.org/10.24297/ijct.v4i3.4207, http://cirworld.com/index.php/ijct/ article/view/3038/pdf.
  • Patsiomitou, S. (2013b) Instrumental decoding of students’ conceptual knowledge through the modeling of real problems in a dynamic geometry environment. “EUCLID C”: Scientific journal of Hellenic Mathematical Society (79), pp.107-136. (in Greek)
  • Patsiomitou, S. (2014). Student’s Learning Progression Through Instrumental Decoding of Mathematical Ideas. Global Journal of Computer Science and Technology, Vol. 14 Issue 1,pp. 1-42. Online ISSN: 0975-4172 & Print ISSN: 0975-4350. http://computerresearch.org/index.php/computer/ article/view/41/41
  • Patsiomitou, S. (2015a). A Dynamic Teaching Cycle of Mathematics through Linking Visual Active Representations”. Scientific Journal “ERKYNA”, PanHellenic Pedagogical Society for Secondary-level Education. Vol.7, pp. 70-86. https://erkyna.gr/e_docs/periodiko/dimosieyseis/thet_epistimes/t07-05.pdf(in Greek).
  • Patsiomitou, S. (2015b). The development of students’ competence on instrumental decoding as a non-linguistic warrant for the development of their geometric thinking. Scientific journal “The New Educator (Neos Paidagogos)”.  5th issue, pp. 29-60. (in Greek)
  • Patsiomitou, S. (2015c). The Open eClass platform as a means for instructional design and curriculum management. Scientific journal “The New Educator (Neos Paidagogos)”. 6th issue, pp.211-244. (The paper has been presented at the conference of “Education in the era of ICT”, 7 November 2015, Eugenides Foundation, conference proceedings: pp. 700-738) (in Greek).
  • Patsiomitou, S. (2016a). Synthesis, application and evaluation of a “dynamic” curriculum: Transformations of fractals objects, parametric regular polygons and number π. Linking Visual Active Representations. Invited Speech. 3rd Panhellenic Conference of “The New Educator (Neos Paidagogos)”April 16-17. Eugenides Foundation, pp.3563-3602. (in Greek)
  • Patsiomitou, S. (2016b). Linking Visual Active Representations: Synthesis, implementation and evaluation of a “dynamic” curriculum based to dynamic transformations of mathematical objects with the utilization of interaction techniques. Scientific journal “The New Educator (Neos Paidagogos)”. 7th issue, pp. 315-347(in Greek)
  • Patsiomitou, S. (2016c) Environment & computer environments: The role of games to the development of students’ competencies and their sense for a substantial school environment. Proceedings of the 13rd Panhellenic conference “The Education in the era of ICT and innovation” pp. 967-994.  ISBN: 978-618-82301-1-8(in Greek).
  • Patsiomitou, S. (2018a). A dynamic active learning trajectory for the construction of number pi (π): transforming mathematics education. International Journal of Education and Research. 6 (8) pp. 225-248.http://www.ijern.com/journal/2018/August-2018/18.pdf
  • Patsiomitou, S. (2018b). An ‘alive’ DGS tool for students’ cognitive development. International Journal of Progressive Sciences and Technologies (IJPSAT) ISSN: 2509-0119. Vol. 11 No. 1 October 2018, pp. 35-54. http://ijpsat.ijsht-journals.org/index.php/ijpsat/article/view/636.
  • Patsiomitou, S. (2019a). From Vecten’s Theorem to Gamow’s Problem: Building an Empirical Classification Model for Sequential Instructional Problems in Geometry. Journal of Education and Practice. Vol.10, No.5, pp.1-23. DOI: 10.7176/JEP/10-5-01. https://iiste.org/Journals/index.php/JEP/article/view/46479.
  • Patsiomitou, S. (2019b). Hybrid-dynamic objects: DGS environments and conceptual transformations. International Journal for Educational and Vocational Studies. Vol. 1, No. 1, May 2019, pp. 31-46. DOI: https://doi.org/10.29103/ijevs.v1i1.1416. Available online at http://ojs.unimal.ac.id/index.php/ijevs.
  • Patsiomitou, S. (2019c). A Trajectory for the Teaching and Learning of the Didactics of Mathematics [using ICT]: Linking Visual Active Representations. Monograph. Published by Global Journal Incorporated. United States. (September 5, 2019) . ISBN: 978-1-7340132-0-7. http://doi.org/10.34257/SPatTrajICT .
  • Patsiomitou, S. (2020a). Didactics of Mathematics I: Linking Visual Active Representations. Monograph. Anatolikos. Athens, ISBΝ: 978-618-5136-46-8. https://www.academia.edu/42019703/ (in Greek).
  • Patsiomitou, S. (2020b). Didactics, Instruction and Assessment of Mathematics: Learning Trajectories and Curriculum. Monograph. Anatolikos. Athens ISBΝ: 978-618-5136-49-9. https://www.academia.edu/43702210/(in Greek).
  • Patsiomitou, S. (2020c). Didactics and Instruction of Mathematics: From theory to action using microworlds. Monograph. Angelakis Publications. Athens. ISBN: 978-960-616-155-1. https://www.academia.edu/43795275/(in Greek).
  • Patsiomitou, S. (2021a). Dynamic Euclidean Geometry: pseudo-Toulmin modeling transformations and instrumental learning trajectories. International Institute for Science, Technology and Education (IISTE): E-Journals. Journal of Education and Practice. ISSN 2222-1735 (Paper) ISSN 2222-288X (Online). 12 (9). pp. 80-96. DOI: 10.7176/JEP/12-9-09.
  • Patsiomitou, S. (2021b). A Research Synthesis Using Instrumental Learning Trajectories: Knowing How and Knowing Why. International Institute for Science, Technology and Education (IISTE): E-Journals. Information and Knowledge Management. ISSN 2224-5758 (Paper) ISSN 2224-896X (Online). 11(3). DOI: 10.7176/IKM/11-3-02.
  • Patsiomitou, S. (2021c). Instrumental learning trajectories: the case of Geogebra. Monograph. Angelakis publications. Athens. ISBN:978-960-616-193  https://www.academia.edu/79248541/ (in Greek).
  • Patsiomitou, S. (2021d). Creativity and skills in Mathematics. ISBN: 978-618-00-3221-5. https://www.academia.edu/51047627/ (in Greek).
  • Patsiomitou, S. (2022a). Conceptual and instrumental trajectories using linking visual active representations created with the Geometer’s Sketchpad. Monograph. Klidarithmos publications.Athens.ISBN:978-960-645-302-1. https://service.eudoxus.gr/search/#a/id:112691124/0 (in Greek).
  • Patsiomitou, S. (2022b). DGS Cui-Rods: Reinventing Mathematical Concepts. GPH-International Journal of Educational Research, 5(09), 01-11. https://doi.org/10.5281/zenodo.7036045.
  • Patsiomitou, S. (2022c). Inquiring and learning with DGS Cui-Rods: a proposal for managing the complexity of how primary-school pupils’ mathematically structure odd-even numbers. International Journal of Scientific and Management Research. Volume 5 Issue 8 August 2022, pp143-163. http://doi.org/10.37502/IJSMR.2022.5813.
  • Patsiomitou, S. (2022d). Digital-Concrete Materials: Revisiting Fröbel in Sketchpad Tasks. GPH-International Journal of Educational Research5(10), 01-15. https://doi.org/10.5281/zenodo.7185215.
  • Patsiomitou, S. (2023a). Developing and Managing Knowledge through the Eyes of the Young Learner: ‘Alive’ Manipulatives before Abstract Notions. International Journal of Scientific and Management Research. Volume 6 Issue 3 March 2023, pp 18-40.http://doi.org/10.37502/IJSMR.2023.6302.
  • Patsiomitou, S. (2023b). A brief review on my studies: managing the complexity on using Linking Visual Active Representations (LVAR) International Journal of Scientific and Management Research.Volume 6 Issue 05 (May) 2023, pp.1-33.  http://doi.org/10.37502/IJSMR.2023.6501.
  • Patsiomitou, S. (2023c). A dynamic multi-level curriculum based on the central idea of Linking Visual Active Representations (LVAR): research studies in the period 2005-2023. Monograph. Angelakis publications. Athens. ISBN: 978-960-616-351-7 (504 pages)
  • Patsiomitou, S. (2024a). Enhancing the effectiveness of Geometry Instruction by leveraging AI in combination with Dynamic Geometry software.  Open Classroom Conference 2024: Learning from the Extremes. 19-20/1/2024. https://www.learningfromtheextremes.eu/files/Conference/Conference_Proceedings_FINAL.pdf.
  • Patsiomitou, S. (2024b). The influence of artificial intelligence and digital media on the evaluation of school units and the enhancement of educational quality. Proceedings of the 3rd International Conference of Educational Assessment. II(8), pp. 351-373. https://eletea.gr/el/τεύχος-8-τόμος-ιι-2024/. (in Greek)
  • Patsiomitou, S. (2024c). Investigating Artificial Intelligence Technologies in Generating LVAR. International Journal of Research in Education Humanities and Commerce. Volume 05, Issue 05, pp 194-217. “September – October 2024”. https://doi.org/10.37602/IJREHC.2024.5515
  • Patsiomitou, S. (2024d). Abstract, instrumental, and deductive geometric trajectories on quadrilaterals. Monograph. Angelakis Publications.ISBN: 978-960-616-370-8. https://www.academia.edu/114452254/ (in Greek)
  • Patsiomitou, S. (2025).  From the concept of schema to the idea of “instrumental” social schema. International Journal of Research in Education Humanities and Commerce. Volume 06, Issue 02 “March – April 2025. pp. 262-289. https://doi.org/10.37602/IJREHC.2025.6220.
  • Patsiomitou, S. and Emvalotis A. (2009d) Composing and testing a DG research–based curriculum designed to develop students’ geometrical thinking. Paper at the annual European Conference on Educational Research (ECER) Vienna, Sept. 25 – 28, 2009. https://www.academia.edu/1764260/
  • Piaget, J. (1985). The equilibration of cognitive structures: The central problem of intellectual development. Chicago: University of Chicago Press. (Original work published in 1975)
  • Pierce R, Stacey K. (2009). Using Dynamic Geometry to Bring the Real World into the Classroom. http://www.edfac.unimelb.edu.au/sme/research/Pierce_Stacey_GGB.pdf.
  • Shriki, A., & Nutov, L. (2016). Fractals in the mathematics classroom: The case of infinite geometric series. Learning and Teaching Mathematics, 20, 38-42. https://www.academia.edu/95171169
  • Rabardel, P. (1995). Les hommes et les technologies, approche cognitive des instruments contemporains. Paris : Armand Colin.
  • Scher, D. (2000). Lifting the curtain: The evolution of the Geometer’s Sketchpad. The Mathematics Educator, 10(1), 42–48.
  • Scher, D.P. (2002). Students’ conceptions of geometry in a dynamic geometry software environment. Doctor of Philosophy in the  School of Education. New York University.
  • Schumann, H. & Green, D. (1994). Discovering geometry with a computer – using Cabri Geometre. Sweden: Studentlitteratur. Lund
  • Sternberg, R. J. & Sternberg, K. (2012). Cognitive psychology (6th ed.). Belmont, CA: Cengage.
  • Sträßer, R. (2001). Cabri-Geometre: Does Dynamic Geometry software (DGS) change geometry and it’s teaching and learning? International Journal of Computers for Mathematical Learning ,6, pp. 319–333.
  • Sträßer, R. (2002). Research on dynamic geometry software (DGS) – An introduction. ZDM, Vol. 34,p. 65.
  • Sträßer, R. (2003) Macros and Proofs: Dynamical Geometry Software as an Instrument to Learn Mathematics Proceedings of 11th International Conference on Artificial Intelligence in Education, Sydney Australia.
  • Teia, L. (2016). Anatomy of the Pythagoras’ tree. Australian Senior Mathematics Journal, 30(2),. 38–47.
  • Teppo, A. (1991). Van Hiele levels of geometric thought revisited. Mathematics Teacher, 84, 210-221.
  • Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136. https://doi.org/10.1016/0010-0285(80)90005-5
  • Trouche, L. (2003) From Artifact to Instrument : Mathematics Teaching Mediated by Symbolic Calculators, in P. Rabardel and Y. Waern (eds), special issue of Interacting with Computers  in, vol.15 (6).
  • Trouche, L. (2004). Managing the complexity of the human/machine interaction in computerized learning environments: guiding students’ command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning 9, pp. 281-307, Kluwer academic publishers
  • Van Hiele, P. M. (1986). Structure and insight: A theory of mathematics education. Orlando, Florida: Academic Press.
  • Van Hiele-Geldof, D. (1957/1984). The didactics of geometry in the lowest class of secondary school. In D. Fuys, D. Geddes, & R. Tischler (Eds.), English translation of selected writings of Dina van Hiele-Geldof and Pierre M. van Hiele. Brooklyn: Brooklyn College. Original document in Dutch. De didakteik van de meetkunde in de eerste klas van het V.H.M.O.Unpublished thesis, University of Utrecht, 1957. (ERIC Document Reproduction Service, No. ED 287 697).
  • Vergnaud G.:(1990). Epistemology and psychology of mathematics education, in: Mathematics and Cognition: A research synthesis by the International Group for Psychology of Mathematics Education (pp.14-30), ICMI Study Series. Cambridge University Press.
  • Vergnaud, G. (1998) A Comprehensive Theory of Representation for Mathematics Education. Journal of Mathematical Behavior, 17 (2), 167-181 ISSN 0364-0213
  • Vergnaud, G. (2009). The theory of conceptual fields. In T. Nunes (Ed.), Giving meaning to mathematical signs: Psychological, pedagogical and cultural processesHuman Development [Special Issue], 52, 83–94.